4 research outputs found

    Face the Future-Artificial Intelligence in Oral and Maxillofacial Surgery.

    Get PDF
    Artificial intelligence (AI) has emerged as a versatile health-technology tool revolutionizing medical services through the implementation of predictive, preventative, individualized, and participatory approaches. AI encompasses different computational concepts such as machine learning, deep learning techniques, and neural networks. AI also presents a broad platform for improving preoperative planning, intraoperative workflow, and postoperative patient outcomes in the field of oral and maxillofacial surgery (OMFS). The purpose of this review is to present a comprehensive summary of the existing scientific knowledge. The authors thoroughly reviewed English-language PubMed/MEDLINE and Embase papers from their establishment to 1 December 2022. The search terms were (1) "OMFS" OR "oral and maxillofacial" OR "oral and maxillofacial surgery" OR "oral surgery" AND (2) "AI" OR "artificial intelligence". The search format was tailored to each database's syntax. To find pertinent material, each retrieved article and systematic review's reference list was thoroughly examined. According to the literature, AI is already being used in certain areas of OMFS, such as radiographic image quality improvement, diagnosis of cysts and tumors, and localization of cephalometric landmarks. Through additional research, it may be possible to provide practitioners in numerous disciplines with additional assistance to enhance preoperative planning, intraoperative screening, and postoperative monitoring. Overall, AI carries promising potential to advance the field of OMFS and generate novel solution possibilities for persisting clinical challenges. Herein, this review provides a comprehensive summary of AI in OMFS and sheds light on future research efforts. Further, the advanced analysis of complex medical imaging data can support surgeons in preoperative assessments, virtual surgical simulations, and individualized treatment strategies. AI also assists surgeons during intraoperative decision-making by offering immediate feedback and guidance to enhance surgical accuracy and reduce complication rates, for instance by predicting the risk of bleeding

    Face the Future—Artificial Intelligence in Oral and Maxillofacial Surgery

    Get PDF
    Artificial intelligence (AI) has emerged as a versatile health-technology tool revolutionizing medical services through the implementation of predictive, preventative, individualized, and participatory approaches. AI encompasses different computational concepts such as machine learning, deep learning techniques, and neural networks. AI also presents a broad platform for improving preoperative planning, intraoperative workflow, and postoperative patient outcomes in the field of oral and maxillofacial surgery (OMFS). The purpose of this review is to present a comprehensive summary of the existing scientific knowledge. The authors thoroughly reviewed English-language PubMed/MEDLINE and Embase papers from their establishment to 1 December 2022. The search terms were (1) “OMFS” OR “oral and maxillofacial” OR “oral and maxillofacial surgery” OR “oral surgery” AND (2) “AI” OR “artificial intelligence”. The search format was tailored to each database’s syntax. To find pertinent material, each retrieved article and systematic review’s reference list was thoroughly examined. According to the literature, AI is already being used in certain areas of OMFS, such as radiographic image quality improvement, diagnosis of cysts and tumors, and localization of cephalometric landmarks. Through additional research, it may be possible to provide practitioners in numerous disciplines with additional assistance to enhance preoperative planning, intraoperative screening, and postoperative monitoring. Overall, AI carries promising potential to advance the field of OMFS and generate novel solution possibilities for persisting clinical challenges. Herein, this review provides a comprehensive summary of AI in OMFS and sheds light on future research efforts. Further, the advanced analysis of complex medical imaging data can support surgeons in preoperative assessments, virtual surgical simulations, and individualized treatment strategies. AI also assists surgeons during intraoperative decision-making by offering immediate feedback and guidance to enhance surgical accuracy and reduce complication rates, for instance by predicting the risk of bleeding

    Comparison of a high-definition three-dimensional digital camera system with a conventional state-of-the-art operation microscope for microsurgical anastomoses

    No full text
    Abstract Since its clinical implementation, microvascular surgery has depended on the continuous improvement of magnification tools. One of the more recent developments is a high-definition three-dimensional (3D) digital system (exoscope), which provides an alternative to the state-of-the-art operating microscopes. This study aimed to evaluate the advantages and disadvantages of this technology and compare it with its predecessor. The study included 14 surgeons with varying levels of experience, none of which had used a 3D optical system previously. Six of these surgeons performed five arterial and five venous anastomoses in the chicken thigh model with both the VITOM 3D exoscope-guided system and the Pentero operating microscope. These anastomoses were then evaluated for their quality and anastomosis time. The participants and the other eight surgeons, who had used the digital 3D camera system for microsurgical training exercises and vascular sutures, answered a questionnaire. The anastomosis time and number of complications were lower with the conventional microscope. Participants rated the image quality with the conventional microscope as higher, whereas the field of view and ergonomics were favorable in the digital 3D camera system. Exoscopes are optics suitable for performing simple microvascular procedures and are superior to classical microscopes ergonomically. Thus far, they are inferior to classical microscopes in terms of image quality and 3D imaging
    corecore