4 research outputs found

    B cell depletion impairs vaccination-induced CD8 T cell responses in a type I interferon-dependent manner.

    Get PDF
    Objectives: The monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses. Methods: CD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens. Results: Rituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I. Conclusions: Depending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses

    Pharmacokinetics of Meropenem in People with Cystic Fibrosis—A Proof of Concept Clinical Trial

    No full text
    Anti-infective treatment of pulmonary exacerbations is a major issue in people with cystic fibrosis (CF). Individualized dosing strategies and adaptation of infusion times are important concepts to optimize anti-infective therapy. In this prospective non-randomized controlled open-label trial, we compared pharmacokinetics of meropenem in 12 people with CF experiencing a pulmonary exacerbation, of whom six received parenteral meropenem 2 g tid as short infusion over 30 min and six extended infusion over 120 min. We measured blood concentrations of meropenem at five predetermined time points over 240 min and calculated differences in the percentages of the time above the minimal inhibitory concentration (fT > MIC) for meropenem concentrations >16 and >32 mg/L, respectively. Mean percentages of fT > 16 and fT > 32 mg/L were higher in the extended compared to the short infusion group (83 and 56% vs. 59% and 34%), with a statistically significant prolongation of the fT > 32 mg/L (mean 134 vs. 82 min; p = 0.037). Our results demonstrate that, in people with CF, longer fT > MIC can be achieved with a simple modification of meropenem dosing. Further studies are needed to clarify if this may translate into improved microbiological and clinical outcomes, in particular in adults with difficult-to-treat chronic infection by carbapenem-resistant Pseudomonas aeruginosa
    corecore