6 research outputs found

    Enabling large area and high throughput roll-to-roll NIL by novel inkjetable and photo-curable NIL-resists

    No full text
    The high throughput and large area nanostructuring of flexible substrates by continuous roller processes has great potential for future custom applications like wire grid polarizers, antireflection films, or super-hydrophobic surfaces. For each application different material characteristics have to be considered, e.g. refractive index, hydrophobicity, or dry etch stability. Herein, we show experimental results of nanoimprint lithography resist developments focused on inkjetable and photo-curable resists suitable for high throughput production, especially roll-to-roll NIL. The inkjet deposition of the novel materials is demonstrated by the use of different state-of-the-art inkjet printheads at room temperature. A plate-to-plate process on silicon substrates was successfully implemented on a NPS300 nano patterning stepper with previously inkjet dispensed NIL resist. Furthermore, we demonstrate a throughput of 30 m/min in a roller NIL process on PET. Dry etching of unstructured thin films on Si wafers was performed, and it was demonstrated that the etch stability in Si is tunable to a value of 3.5:1 by a concise selection of the resist components. The surface roughness of the etched films was measured to be < 2 nm, after etching of around 100 nm of the resist films what is an essential factor for a low line edge roughness. All resists reported herein can be deposited via inkjet dispensing at room temperature, are suitable for continuous high throughput imprinting on flexible substrates, and are applicable in step-wise NIL processes with good etch resistance in dry etch processes

    Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique

    No full text
    Microlens arrays fabricated by a direct ink-jet printing of UV-curable hybrid polymer are reported. A periodic pattern of polymer drops was ink-jet printed on the surface-treated glass substrate and cured in the UV-light. Using this simple technique, we demonstrated periodic arrays of almost semi-spherical microlenses of 50 μm diameter size and a focal distance of 48μm. The optical characteristics of solitary μ-lenses and arrays comprising up to 64x64 microlenses are measured both in the near- and far-field zones. Large numerical aperture and short focal distance make the ink-jet printing of microlenses very attractive for applications in optical interconnects, large 2D VCSEL arrays and pixelated imagine sensors utilizing CCD or SPAD arrays, offering thus an efficient, simple and a cheap alternative to the conventionally used photolithography technique

    Six-layer lamination of a new dry film negative-tone photoresist for fabricating complex 3D microfluidic devices

    No full text
    We present a new epoxy-based negative-tone dry film photoresist (DFR) for fabricating multilayer microfluidic devices using a lamination process combined with a standard photolithography technology. As proof-of-concept, a complex 3D-hydrodynamic focusing device was produced via a six-layer lamination process of 33 µm-thick DFR layers. The bonding strength of the new DFR was tested on silicon, glass, and titanium substrates, respectively. A maximum bonding strength of 37 MPa was obtained for the dry film photoresist laminated on glass. No leakage was found, and burst tests proved excellent robustness and sealing reliability of the microchannels
    corecore