10 research outputs found

    Time-resolved NMR-spectroscopic studies of conformational dynamics in DNA G-quadruplexes

    No full text
    Die vorliegende Arbeit Zeitaufgelöste NMR-spektroskopische Untersuchung konformationeller Dynamiken in DNA G-Quadruplexen befasst sich mit der detaillierten biophysikalischen Untersuchung wichtiger strukturdynamischer Eigenschaften von nicht-kanonischen Nukleinsäure Sekundärstrukturelementen. Im Genom aller eukaryotischer Lebewesen, insbesondere dem menschlichen Genom finden sich DNA-Sequenzabschnitte, die überdurchschnittlich Guanosin (G)-reich sind. Diese poly-G Abschnitte sind nicht zufällig im Genom verteilt, sondern häufen sich vermehrt in Genabschnitten, die besonders wichtig für die Regulation der Genexpression sind. G-reiche DNA-Sequenzen können unter geeigneten Umständen alternative Sekundärstrukturen ausbilden, die von der doppelsträngigen, kanonischen Watson-Crick Konformation abweichen. In Anwesenheit monovalenter Kationen können sich G-Nukleotide in einer Tetrade über Hoogsteen Interaktionen anlagern. Diese Tetraden können sich stapeln und dadurch sogenannte G-Quadruplexe (G4) ausbilden. Das menschliche cMYC Gen wird typischerweise als proto-Onkogen bezeichnet. Es kodiert für einen unspezifischen Transkriptionsfaktor, der bei einer Vielzahl von systematischen und soliden Tumorerkrankungen stark überexprimiert wird. Die zelluläre Konzentration des Genprodukts kann zu 90% über ein G4 cis-Element in der Promotorregion reguliert werden. Der cMYC G4 hat die Möglichkeit verschiedene Konformationen einzunehmen. Im Falle des cMYC G4 kann man zusätzliche, nicht-konventionelle Formen der konformationellen Isomerie finden. Zum einen gibt es die Möglichkeit, dass bei einem G4, der aus drei Tetraden und vier intramolekularen Strangabschnitten (dreistöckiger G4) besteht, einzelne Strangabschnitte mehr als drei konsekutive G-Nukleotide besitzen. Dadurch können sich Faltungs-Isomere bilden, die sich durch Verschieben des Strangs relativ zum verbleibenden dreistöckigen Tetradengerüst ergeben. Man spricht von G-Register Isomeren. Eine zweite Möglichkeit der Strukturisomerie ergibt sich, wenn in einer Nukleotidsequenz mehr als vier G-reiche Strangabschnitte aufeinander folgen. Jeweils vier dieser Strangabschnitte können in unterschiedlicher Weise kombiniert werden, um ein G4 Isomer auszubilden. In jedem dieser so zustande gekommenen G4 verbleibt ein (oder mehrere) G-reicher Strangabschnitt, der im konkreten Isomer nicht zur Faltung verwendet wird. Diese zusätzlichen G-Stränge werden daher auch Ersatzräder (engl. spare-tires) genannt; man erhält spare-tire Isomere. Obwohl diese Formen des Polymorphismus, deren biologischer Kontext und die biophysikalischen Konsequenzen in Arbeiten von C. Burrows (2015) und A. Mittermaier (2016) erstmals umfassend beschrieben wurden, gab es bis zum Ausgangspunkt dieser Arbeit keine Kenntnisse über deren strukturelle Dynamik, den Faltungswegen und den zugrundeliegenden molekularen Mechanismen. Zeitaufgelöste Kernspinresonanz (engl. nuclear magnetic resonance, NMR) Spektroskopie ist eine bestens geeignete Methode, um die Dynamik von Biomakromolekülen mit atomarer Auflösung zu studieren. Um solche Experimente durchführen zu können, braucht es geeignete Herangehensweisen für die Präparation eines Nicht-Gleichgewichtszustands. In dieser Arbeit wird eine neu erarbeitete Strategie vorgestellt, die es erlaubt, Einblick in die Faltungs- und Umfaltungskinetiken eines dynamischen Konformations-Ensembles nicht-konventioneller Strukturisomere der cMYC G4 DNA-Sequenz zu erhalten. Hierzu wurden photolabile Schutzgruppen (engl. Photocages) positionsspezifisch an bestimmten G-Nukleobasen (O6-(R)-NPE) angebracht. Die Schutzgruppen blockieren die Basenpaar-Interaktionen des Nukleotids, wodurch dieses sich nicht mehr an einer Tetradenbildung beteiligen kann. Die Photocages wurden jeweils an den Nukleotiden eingeführt, die nur in jeweils einem der G-Register Isomere an der Tetradenbildung beteiligt sind. Durch diese gezielte Destabilisierung konnten die Isomere getrennt und im gefalteten Zustand isoliert werden. Die so erhaltenen Konformationen wurden umfassend spektroskopisch charakterisiert. Der Ansatz, das konformationelle Gleichgewicht durch Photocages transient zu stören, wurde daraufhin weiterentwickelt. Mehrere Photocages wurden an Nukleobasen in zentraler Position einzelner G-Strangabschnitte angebracht. Dadurch konnte eine ausreichende Destabilisierung erreicht werden, die die Faltung jedweder G4 Strukturen unterbindet. Somit wurde ein ungefalteter Zustand erzeugt, der unter ansonsten frei wählbaren, physiologischen Bedingungen besteht. Durch in situ Photolyse der Schutzgruppen konnte so die Licht-induzierte G4 Faltung unter konstanten Puffer- und Temperaturbedingungen untersucht werden. Dieser Ansatz wurde auf die Untersuchung der Faltungswege, die zu verschiedenen spare-tire Isomeren führen, fokussiert. Zusammenfassend kann festgestellt werden, dass es insgesamt erstmalig gelungen ist, die Kinetiken der wesentlichen Faltungs- und Umfaltungswege entlang der konformationellen Energielandschaft des cMYC G4 Elements zu untersuchen. Das komplexe, dynamische Zusammenspiel aller relevanten, nicht-konventionellen isomeren G4 Strukturen konnte entworren und umfassend experimentell beschrieben werden. Der dafür weiterentwickelte Ansatz über konformationelle Selektion mit Hilfe photolabiler Schutzgruppen hat dabei experimentelle Einblicke erlaubt, die bislang nicht zugänglich waren. Die Strukturen und Faltungszustämde, die mit den chemisch modifizierten Oligonukleotiden erhalten und isoliert wurden, sind umfassend spektroskopisch untersucht worden. Die Anwendung verschiedener spektroskopischer Ansätze und deren Kombination mit weiteren biophysikalischen Methoden hat eine Methoden-unabhängige Validierung der erhaltenen kinetischen und thermodynamischen Daten ermöglicht

    Folding dynamics of polymorphic G-quadruplex structures

    No full text
    G-quadruplexes (G4), found in numerous places within the human genome, are involved in essential processes of cell regulation. Chromosomal DNA G4s are involved for example, in replication and transcription as first steps of gene expression. Hence, they influence a plethora of downstream processes. G4s possess an intricate structure that differs from canonical B-form DNA. Identical DNA G4 sequences can adopt multiple long-lived conformations, a phenomenon known as G4 polymorphism. A detailed understanding of the molecular mechanisms that drive G4 folding is essential to understand their ambivalent regulatory roles. Disentangling the inherent dynamic and polymorphic nature of G4 structures thus is key to unravel their biological functions and make them amenable as molecular targets in novel therapeutic approaches. We here review recent experimental approaches to monitor G4 folding and discuss structural aspects for possible folding pathways. Substantial progress in the understanding of G4 folding within the recent years now allows drawing comprehensive models of the complex folding energy landscape of G4s that we herein evaluate based on computational and experimental evidence

    Modular, triple-resonance, transmission line DNP MAS probe for 500 MHz/330 GHz

    No full text
    © 2019 Elsevier Inc. We describe the design and construction of a modular, triple-resonance, fully balanced, DNP-MAS probe based on transmission line technology and its integration into a 500 MHz/330 GHz DNP-NMR spectrometer. A novel quantitative probe design and characterization strategy is developed and employed to achieve optimal sensitivity, RF homogeneity and excellent isolation between channels. The resulting three channel HCN probe has a modular design with each individual, swappable module being equipped with connectorized, transmission line ports. This strategy permits attachment of a mating connector that facilitates accurate impedance measurements at these ports and allows characterization and adjustment (e.g. for balancing or tuning/matching) of each component individually. The RF performance of the probe is excellent; for example, the 13C channel attains a Rabi frequency of 280 kHz for a 3.2 mm rotor. In addition, a frequency tunable 330 GHz gyrotron operating at the second harmonic of the electron cyclotron frequency was developed for DNP applications. Careful alignment of the corrugated waveguide led to minimal loss of the microwave power, and an enhancement factor ε = 180 was achieved for U-13C urea in the glassy matrix at 80 K. We demonstrated the operation of the system with acquisition of multidimensional spectra of cross-linked lysozyme crystals which are insoluble in glycerol-water mixtures used for DNP and samples of RNA

    Magnetization transfer to enhance NOE cross-peaks among labile protons: applications to imino–imino sequential walks in SARS-CoV-2-derived RNAs

    No full text
    2D NOESY plays a central role in structural NMR spectroscopy. We have recently discussed methods that rely on solvent-driven exchanges to enhance NOE correlations between exchangeable and non-exchangeable protons in nucleic acids. Such methods, however, fail when trying to establish connectivities within pools of labile protons. This study introduces an alternative that also enhances NOEs between such labile sites, based on encoding a priori selected peaks by selective saturations. The resulting selective magnetization transfer (SMT) experiment proves particularly useful for enhancing the imino–imino cross-peaks in RNAs, which is a first step in the NMR resolution of these structures. The origins of these enhancements are discussed, and their potential is demonstrated on RNA fragments derived from the genome of SARS-CoV-2, recorded with better sensitivity and an order of magnitude faster than conventional 2D counterparts

    1H, 13C, 15N and 31P chemical shift assignment for stem-loop 4 from the 5'-UTR of SARS-CoV-2

    No full text
    The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5′- and 3′-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5′-untranslated region (5′-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy

    1H, 13C and 15N chemical shift assignment of the stem-loop 5a from the 5'-UTR of SARS-CoV-2

    No full text
    The SARS-CoV-2 (SCoV-2) virus is the causative agent of the ongoing COVID-19 pandemic. It contains a positive sense single-stranded RNA genome and belongs to the genus of Betacoronaviruses. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are potential antiviral drug targets. Major parts of these sequences are highly conserved among Betacoronaviruses and contain cis-acting RNA elements that affect RNA translation and replication. The 31 nucleotide (nt) long highly conserved stem-loop 5a (SL5a) is located within the 5'-untranslated region (5'-UTR) important for viral replication. SL5a features a U-rich asymmetric bulge and is capped with a 5'-UUUCGU-3' hexaloop, which is also found in stem-loop 5b (SL5b). We herein report the extensive H, C and N resonance assignment of SL5a as basis for in-depth structural studies by solution NMR spectroscopy

    1H, 13C and 15N assignment of stem-loop SL1 from the 5'-UTR of SARS-CoV-2

    No full text
    The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7–33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the 1H, 13C and 15N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair

    Exploring the druggability of conserved RNA regulatory elements in the SARS-CoV-2 genome

    No full text
    SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2

    Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy

    No full text
    The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention
    corecore