50 research outputs found
Natural History Of Atopic Disease In Early Childhood: Is Cord Blood IgE A Prognostic Factor?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68008/2/10.1177_000992289203100411.pd
Fleming's bound for the decay of mixed states
Fleming's inequality is generalized to the decay function of mixed states. We
show that for any symmetric hamiltonian and for any density operator
on a finite dimensional Hilbert space with the orthogonal projection onto
the range of there holds the estimate \Tr(\Pi \rme^{-\rmi ht}\rho
\rme^{\rmi ht}) \geq\cos^{2}((\Delta h)_{\rho}t) for all real with
We show that equality either holds for all
or it does not hold for a single with All the density operators saturating the bound for
all i.e. the mixed intelligent states, are determined.Comment: 12 page
Diffraction in time of a confined particle and its Bohmian paths
Diffraction in time of a particle confined in a box which its walls are
removed suddenly at is studied. The solution of the time-dependent
Schr\"{o}dinger equation is discussed analytically and numerically for various
initial wavefunctions. In each case Bohmian trajectories of the particles are
computed and also the mean arrival time at a given location is studied as a
function of the initial state.Comment: 8 pages, 6 figure
Bohmian trajectories and Klein's paradox
We compute the Bohmian trajectories of the incoming scattering plane waves
for Klein's potential step in explicit form. For finite norm incoming
scattering solutions we derive their asymptotic space-time localization and we
compute some Bohmian trajectories numerically. The paradox, which appears in
the traditional treatments of the problem based on the outgoing scattering
asymptotics, is absent.Comment: 14 pages, 3 figures; minor format change
Time of Arrival from Bohmian Flow
We develop a new conception for the quantum mechanical arrival time
distribution from the perspective of Bohmian mechanics. A detection probability
for detectors sensitive to quite arbitrary spacetime domains is formulated.
Basic positivity and monotonicity properties are established. We show that our
detection probability improves and generalises earlier proposals by Leavens and
McKinnon. The difference between the two notions is illustrated through
application to a free wave packet.Comment: 18 pages, 8 figures, to appear in Journ. Phys. A; representation of
ref. 5 improved (thanks to Rick Leavens
Implications of Lorentz covariance for the guidance equation in two-slit quantum interference
It is known that Lorentz covariance fixes uniquely the current and the
associated guidance law in the trajectory interpretation of quantum mechanics
for spin particles. In the non-relativistic domain this implies a guidance law
for the electron which differs by an additional spin-dependent term from that
originally proposed by de Broglie and Bohm. In this paper we explore some of
the implications of the modified guidance law. We bring out a property of
mutual dependence in the particle coordinates that arises in product states,
and show that the quantum potential has scalar and vector components which
implies the particle is subject to a Lorentz-like force. The conditions for the
classical limit and the limit of negligible spin are given, and the empirical
sufficiency of the model is demonstrated. We then present a series of
calculations of the trajectories based on two-dimensional Gaussian wave packets
which illustrate how the additional spin-dependent term plays a significant
role in structuring both the individual trajectories and the ensemble. The
single packet corresponds to quantum inertial motion. The distinct features
encountered when the wavefunction is a product or a superposition are explored,
and the trajectories that model the two-slit experiment are given. The latter
paths exhibit several new characteristics compared with the original de
Broglie-Bohm ones, such as crossing of the axis of symmetry.Comment: 27 pages including 6 pages of figure
Emergence of four dimensional quantum mechanics from a deterministic theory in 11 dimensions
We develop a deterministic theory which accounts for the coupling of a high dimensional continuum of environmental excitations (called gravonons) to massive particle in a very localized and very weak fashion. For the model presented Schrodinger's equation can be solved practically exactly in 11 spacetime dimensions and the result demonstrates that as a function of time an incoming matter wave incident on a screen extinguishes, except at a single interaction center on the detection screen. This transition is reminiscent of the wave - particle duality arising from the "collapse" (also called "process one") postulated in the Copenhagen-von Neumann interpretation. In our theory it is replaced by a sticking process of the particle from the vacuum to the surface of the detection screen. This situation was verified in experiments by using massive molecules. In our theory this "wave-particle transition" is connected to the different dimensionalities of the space for particle motion and the gravonon dynamics, the latter propagating in the hidden dimensions of 11 dimensional spacetime. The fact that the particle is detected at apparently statistically determined points on the screen is traced back to the weakness and locality of the interaction with the gravonons which allows coupling on the energy shell alone. Although the theory exhibits a completely deterministic "chooser" mechanism for single site sticking, an apparent statistical character results, as it is found in the experiments, due to small heterogeneities in the atomic and gravonon structures