50 research outputs found

    Natural History Of Atopic Disease In Early Childhood: Is Cord Blood IgE A Prognostic Factor?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68008/2/10.1177_000992289203100411.pd

    Fleming's bound for the decay of mixed states

    Full text link
    Fleming's inequality is generalized to the decay function of mixed states. We show that for any symmetric hamiltonian hh and for any density operator ρ\rho on a finite dimensional Hilbert space with the orthogonal projection Π\Pi onto the range of ρ\rho there holds the estimate \Tr(\Pi \rme^{-\rmi ht}\rho \rme^{\rmi ht}) \geq\cos^{2}((\Delta h)_{\rho}t) for all real tt with (Δh)ρtπ/2.(\Delta h)_{\rho}| t| \leq\pi/2. We show that equality either holds for all tRt\in\mathbb{R} or it does not hold for a single tt with 0<(Δh)ρtπ/2.0<(\Delta h)_{\rho}| t| \leq\pi/2. All the density operators saturating the bound for all tR,t\in\mathbb{R}, i.e. the mixed intelligent states, are determined.Comment: 12 page

    Diffraction in time of a confined particle and its Bohmian paths

    Full text link
    Diffraction in time of a particle confined in a box which its walls are removed suddenly at t=0t=0 is studied. The solution of the time-dependent Schr\"{o}dinger equation is discussed analytically and numerically for various initial wavefunctions. In each case Bohmian trajectories of the particles are computed and also the mean arrival time at a given location is studied as a function of the initial state.Comment: 8 pages, 6 figure

    Bohmian trajectories and Klein's paradox

    Get PDF
    We compute the Bohmian trajectories of the incoming scattering plane waves for Klein's potential step in explicit form. For finite norm incoming scattering solutions we derive their asymptotic space-time localization and we compute some Bohmian trajectories numerically. The paradox, which appears in the traditional treatments of the problem based on the outgoing scattering asymptotics, is absent.Comment: 14 pages, 3 figures; minor format change

    Time of Arrival from Bohmian Flow

    Get PDF
    We develop a new conception for the quantum mechanical arrival time distribution from the perspective of Bohmian mechanics. A detection probability for detectors sensitive to quite arbitrary spacetime domains is formulated. Basic positivity and monotonicity properties are established. We show that our detection probability improves and generalises earlier proposals by Leavens and McKinnon. The difference between the two notions is illustrated through application to a free wave packet.Comment: 18 pages, 8 figures, to appear in Journ. Phys. A; representation of ref. 5 improved (thanks to Rick Leavens

    Implications of Lorentz covariance for the guidance equation in two-slit quantum interference

    Full text link
    It is known that Lorentz covariance fixes uniquely the current and the associated guidance law in the trajectory interpretation of quantum mechanics for spin particles. In the non-relativistic domain this implies a guidance law for the electron which differs by an additional spin-dependent term from that originally proposed by de Broglie and Bohm. In this paper we explore some of the implications of the modified guidance law. We bring out a property of mutual dependence in the particle coordinates that arises in product states, and show that the quantum potential has scalar and vector components which implies the particle is subject to a Lorentz-like force. The conditions for the classical limit and the limit of negligible spin are given, and the empirical sufficiency of the model is demonstrated. We then present a series of calculations of the trajectories based on two-dimensional Gaussian wave packets which illustrate how the additional spin-dependent term plays a significant role in structuring both the individual trajectories and the ensemble. The single packet corresponds to quantum inertial motion. The distinct features encountered when the wavefunction is a product or a superposition are explored, and the trajectories that model the two-slit experiment are given. The latter paths exhibit several new characteristics compared with the original de Broglie-Bohm ones, such as crossing of the axis of symmetry.Comment: 27 pages including 6 pages of figure

    Emergence of four dimensional quantum mechanics from a deterministic theory in 11 dimensions

    Get PDF
    We develop a deterministic theory which accounts for the coupling of a high dimensional continuum of environmental excitations (called gravonons) to massive particle in a very localized and very weak fashion. For the model presented Schrodinger's equation can be solved practically exactly in 11 spacetime dimensions and the result demonstrates that as a function of time an incoming matter wave incident on a screen extinguishes, except at a single interaction center on the detection screen. This transition is reminiscent of the wave - particle duality arising from the "collapse" (also called "process one") postulated in the Copenhagen-von Neumann interpretation. In our theory it is replaced by a sticking process of the particle from the vacuum to the surface of the detection screen. This situation was verified in experiments by using massive molecules. In our theory this "wave-particle transition" is connected to the different dimensionalities of the space for particle motion and the gravonon dynamics, the latter propagating in the hidden dimensions of 11 dimensional spacetime. The fact that the particle is detected at apparently statistically determined points on the screen is traced back to the weakness and locality of the interaction with the gravonons which allows coupling on the energy shell alone. Although the theory exhibits a completely deterministic "chooser" mechanism for single site sticking, an apparent statistical character results, as it is found in the experiments, due to small heterogeneities in the atomic and gravonon structures
    corecore