11 research outputs found

    Pharmaceutical pollution disrupts the behaviour and predator–prey interactions of two widespread aquatic insects

    Get PDF
    Pharmaceutical pollution represents a rapidly growing threat to ecosystems worldwide. Drugs are now commonly detected in the tissues of wildlife and have the potential to alter the natural expression of behavior, though relatively little is known about how pharmaceuticals impact predator-prey interactions. We conducted parallel laboratory experiments using larval odonates (dragonfly and damselfly nymphs) to investigate the effects of exposure to two pharmaceuticals, cetirizine and citalopram, and their mixture on the outcomes of predator-prey interactions. We found that exposure to both compounds elevated dragonfly activity and impacted their predation success and efficiency in complex ways. While exposure to citalopram reduced predation efficiency, exposure to cetirizine showed varied effects, with predation success being enhanced in some contexts but impaired in others. Our findings underscore the importance of evaluating pharmaceutical effects under multiple contexts and indicate that these compounds can affect predator-prey outcomes at sublethal concentrations

    Sediment matters as a route of microplastic exposure:A call for more research on the benthic compartment

    Get PDF
    Microplastics (MPs) are ubiquitous in the marine environment. Here, most MPs are expected to sink, either due to polymer density or environmental processes, such as biofouling, leading to sediment being proposed to act as a final sink for marine MPs. There is a discrepancy between the anticipated accumulation of MPs in the sediment compartment and the MP experiments conducted, since most MP effect studies have been conducted with pelagic species using water-only exposures. Here we address fundamental questions in relation to MP pollution to close the knowledge gap related hereto. A systematic literature search was performed to address these questions. We found that benthic invertebrates ingest MPs and that, even though these organisms evolutionary are adapted to handle particles, adverse effects may be observed upon ingestion of MPs. The analysis further revealed that there is a major knowledge gap on the impacts of sediment-associated MPs in marine, benthic invertebrates. To facilitate further and structured research within this topic, we recommend more studies with emphasis on the sediment as an important exposure pathway, and to focus on sediment-associated MP effects on benthic invertebrates. We recommend studies with ecological relevant exposure concentrations and ecological relevant exposure durations with emphasis on impacts on population- and community-level to reduce the knowledge gap within this central area of MP pollution research
    corecore