572 research outputs found
Threesomes, Degenerates, and Love Triangles
The 3SUM problem is to decide, given a set of real numbers, whether any
three sum to zero. It is widely conjectured that a trivial -time
algorithm is optimal and over the years the consequences of this conjecture
have been revealed. This 3SUM conjecture implies lower bounds on
numerous problems in computational geometry and a variant of the conjecture
implies strong lower bounds on triangle enumeration, dynamic graph algorithms,
and string matching data structures.
In this paper we refute the 3SUM conjecture. We prove that the decision tree
complexity of 3SUM is and give two subquadratic 3SUM
algorithms, a deterministic one running in
time and a randomized one running in time with
high probability. Our results lead directly to improved bounds for -variate
linear degeneracy testing for all odd . The problem is to decide, given
a linear function and a set , whether . We show the
decision tree complexity of this problem is .
Finally, we give a subcubic algorithm for a generalization of the
-product over real-valued matrices and apply it to the problem of
finding zero-weight triangles in weighted graphs. We give a
depth- decision tree for this problem, as well as an
algorithm running in time
Towards Tight Lower Bounds for Range Reporting on the RAM
In the orthogonal range reporting problem, we are to preprocess a set of
points with integer coordinates on a grid. The goal is to support
reporting all points inside an axis-aligned query rectangle. This is one of
the most fundamental data structure problems in databases and computational
geometry. Despite the importance of the problem its complexity remains
unresolved in the word-RAM. On the upper bound side, three best tradeoffs
exists: (1.) Query time with words
of space for any constant . (2.) Query time with words of space. (3.) Query time
with optimal words of space. However, the
only known query time lower bound is , even for linear
space data structures.
All three current best upper bound tradeoffs are derived by reducing range
reporting to a ball-inheritance problem. Ball-inheritance is a problem that
essentially encapsulates all previous attempts at solving range reporting in
the word-RAM. In this paper we make progress towards closing the gap between
the upper and lower bounds for range reporting by proving cell probe lower
bounds for ball-inheritance. Our lower bounds are tight for a large range of
parameters, excluding any further progress for range reporting using the
ball-inheritance reduction
Daily modulation and gravitational focusing in direct dark matter search experiments
We study the effect of gravitational focusing of the earth on dark matter. We
find that the effect can produce a detectable diurnal modulation in the dark
matter signal for part of the parameter space which for high dark matter masses
is larger than the diurnal modulation induced by the fluctuations in the flux
of dark matter particles due to the rotation of the earth around its own axis.
The two sources of diurnal modulation have different phases and can be
distinguished from each other. We demonstrate that the diurnal modulation can
potentially check the self-consistency of experiments that observe annual
modulated signals that can be attributed to dark matter. Failing to discover a
daily varying signal can result conclusively to the falsification of the
hypothesis that the annual modulation is due to dark matter. We also suggest
that null result experiments should check for a daily modulation of their
rejected background signal with specific phases. A potential discovery could
mean that dark matter collisions have been vetoed out.Comment: 8 pages, 4 figures (published version
New Unconditional Hardness Results for Dynamic and Online Problems
There has been a resurgence of interest in lower bounds whose truth rests on
the conjectured hardness of well known computational problems. These
conditional lower bounds have become important and popular due to the painfully
slow progress on proving strong unconditional lower bounds. Nevertheless, the
long term goal is to replace these conditional bounds with unconditional ones.
In this paper we make progress in this direction by studying the cell probe
complexity of two conjectured to be hard problems of particular importance:
matrix-vector multiplication and a version of dynamic set disjointness known as
Patrascu's Multiphase Problem. We give improved unconditional lower bounds for
these problems as well as introducing new proof techniques of independent
interest. These include a technique capable of proving strong threshold lower
bounds of the following form: If we insist on having a very fast query time,
then the update time has to be slow enough to compute a lookup table with the
answer to every possible query. This is the first time a lower bound of this
type has been proven
- …