572 research outputs found

    Threesomes, Degenerates, and Love Triangles

    Full text link
    The 3SUM problem is to decide, given a set of nn real numbers, whether any three sum to zero. It is widely conjectured that a trivial O(n2)O(n^2)-time algorithm is optimal and over the years the consequences of this conjecture have been revealed. This 3SUM conjecture implies Ω(n2)\Omega(n^2) lower bounds on numerous problems in computational geometry and a variant of the conjecture implies strong lower bounds on triangle enumeration, dynamic graph algorithms, and string matching data structures. In this paper we refute the 3SUM conjecture. We prove that the decision tree complexity of 3SUM is O(n3/2logn)O(n^{3/2}\sqrt{\log n}) and give two subquadratic 3SUM algorithms, a deterministic one running in O(n2/(logn/loglogn)2/3)O(n^2 / (\log n/\log\log n)^{2/3}) time and a randomized one running in O(n2(loglogn)2/logn)O(n^2 (\log\log n)^2 / \log n) time with high probability. Our results lead directly to improved bounds for kk-variate linear degeneracy testing for all odd k3k\ge 3. The problem is to decide, given a linear function f(x1,,xk)=α0+1ikαixif(x_1,\ldots,x_k) = \alpha_0 + \sum_{1\le i\le k} \alpha_i x_i and a set ARA \subset \mathbb{R}, whether 0f(Ak)0\in f(A^k). We show the decision tree complexity of this problem is O(nk/2logn)O(n^{k/2}\sqrt{\log n}). Finally, we give a subcubic algorithm for a generalization of the (min,+)(\min,+)-product over real-valued matrices and apply it to the problem of finding zero-weight triangles in weighted graphs. We give a depth-O(n5/2logn)O(n^{5/2}\sqrt{\log n}) decision tree for this problem, as well as an algorithm running in time O(n3(loglogn)2/logn)O(n^3 (\log\log n)^2/\log n)

    Towards Tight Lower Bounds for Range Reporting on the RAM

    Full text link
    In the orthogonal range reporting problem, we are to preprocess a set of nn points with integer coordinates on a U×UU \times U grid. The goal is to support reporting all kk points inside an axis-aligned query rectangle. This is one of the most fundamental data structure problems in databases and computational geometry. Despite the importance of the problem its complexity remains unresolved in the word-RAM. On the upper bound side, three best tradeoffs exists: (1.) Query time O(lglgn+k)O(\lg \lg n + k) with O(nlgεn)O(nlg^{\varepsilon}n) words of space for any constant ε>0\varepsilon>0. (2.) Query time O((1+k)lglgn)O((1 + k) \lg \lg n) with O(nlglgn)O(n \lg \lg n) words of space. (3.) Query time O((1+k)lgεn)O((1+k)\lg^{\varepsilon} n) with optimal O(n)O(n) words of space. However, the only known query time lower bound is Ω(loglogn+k)\Omega(\log \log n +k), even for linear space data structures. All three current best upper bound tradeoffs are derived by reducing range reporting to a ball-inheritance problem. Ball-inheritance is a problem that essentially encapsulates all previous attempts at solving range reporting in the word-RAM. In this paper we make progress towards closing the gap between the upper and lower bounds for range reporting by proving cell probe lower bounds for ball-inheritance. Our lower bounds are tight for a large range of parameters, excluding any further progress for range reporting using the ball-inheritance reduction

    Daily modulation and gravitational focusing in direct dark matter search experiments

    Get PDF
    We study the effect of gravitational focusing of the earth on dark matter. We find that the effect can produce a detectable diurnal modulation in the dark matter signal for part of the parameter space which for high dark matter masses is larger than the diurnal modulation induced by the fluctuations in the flux of dark matter particles due to the rotation of the earth around its own axis. The two sources of diurnal modulation have different phases and can be distinguished from each other. We demonstrate that the diurnal modulation can potentially check the self-consistency of experiments that observe annual modulated signals that can be attributed to dark matter. Failing to discover a daily varying signal can result conclusively to the falsification of the hypothesis that the annual modulation is due to dark matter. We also suggest that null result experiments should check for a daily modulation of their rejected background signal with specific phases. A potential discovery could mean that dark matter collisions have been vetoed out.Comment: 8 pages, 4 figures (published version

    New Unconditional Hardness Results for Dynamic and Online Problems

    Get PDF
    There has been a resurgence of interest in lower bounds whose truth rests on the conjectured hardness of well known computational problems. These conditional lower bounds have become important and popular due to the painfully slow progress on proving strong unconditional lower bounds. Nevertheless, the long term goal is to replace these conditional bounds with unconditional ones. In this paper we make progress in this direction by studying the cell probe complexity of two conjectured to be hard problems of particular importance: matrix-vector multiplication and a version of dynamic set disjointness known as Patrascu's Multiphase Problem. We give improved unconditional lower bounds for these problems as well as introducing new proof techniques of independent interest. These include a technique capable of proving strong threshold lower bounds of the following form: If we insist on having a very fast query time, then the update time has to be slow enough to compute a lookup table with the answer to every possible query. This is the first time a lower bound of this type has been proven

    Assessing the effect of naloxegol on opioid-induced bowel dysfunction

    Get PDF
    corecore