3 research outputs found

    Regional superparameterization in a global circulation model using Large Eddy Simulations

    Get PDF
    As a computationally attractive alternative for global large eddy simulations (LESs), we investigate the possibility of using comprehensive three‐dimensional LESs as a superparameterization that can replace all traditional parameterizations of atmospheric processes that are currently used in global models. We present the technical design for a replacement of the parameterization for clouds, convection, and turbulence of the global atmospheric model of the European Centre for Medium‐Range Weather Forecasts by the Dutch Atmospheric Large Eddy Simulation model. The model coupling consists of bidirectional data exchange between the global model and the high‐resolution LES models embedded within the columns of the global model. Our setup allows for selective superparameterization, that is, for applying superparameterization in local regions selected by the user, while keeping the standard parameterization of the global model intact outside this region. Computationally, this setup can result in major geographic load imbalance, because of the large difference in computational load between superparameterized and nonsuperparameterized model columns. To resolve this issue, we use a modular design where the local and global models are kept as distinct model codes and organize the model coupling such that all the local models run in parallel, separate from the global model. First simulation results, employing this design, demonstrate the potential of our approach

    Representing cloud mesoscale variability in superparameterized climate models

    Get PDF
    In atmospheric modeling, superparameterization (SP) has gained popularity as a technique to improve cloud and convection representations in large-scale models by coupling them locally to cloud-resolving models. We show how the different representations of cloud water in the local and the global models in SP lead to a suppression of cloud advection and ultimately to a systematic underrepresentation of the cloud amount in the large-scale model. We demonstrate this phenomenon in a regional SP experiment with the global model OpenIFS coupled to the local model Dutch Atmospheric Large Eddy Simulation, as well as in an idealized setup, where the large-scale model is replaced by a simple advection scheme. As a starting point for mitigating the problem of suppressed cloud advection, we propose a scheme where the spatial variability of the local model's total water content is enhanced in order to match the global model's cloud condensate amount. The proposed scheme enhances the cloud condensate amount in the test cases, however a large discrepancy remains, caused by rapid dissipation of the clouds added by the proposed scheme

    A Python interface to the Dutch Atmospheric Large-Eddy Simulation

    Get PDF
    We present a Python interface for the Dutch Atmospheric Large Eddy Simulation (DALES), an existing Fortran code for high-resolution, turbulence-resolving simulation of atmospheric physics. The interface is based on an infrastructure for remote and parallel function calls and makes it possible to use and control the DALES weather simulations from a Python context. The interface is designed within the OMUSE framework, and allows the user to set up and control the simulation, apply perturbations and forcings, collect and analyse data in real time without exposing the user to the details of setting up and running the parallel Fortran DALES code. Another significant possibility is coupling the DALES simulation to other models, for example larger scale numerical weather prediction (NWP) models that can supply realistic lateral boundary conditions. Finally, the Python interface to DALES can serve as an educational tool for exploring weather dynamics, which we demonstrate with an example Jupyter notebook
    corecore