19 research outputs found
Evolutionary Conserved Regulatory Mechanisms of the JAK/STAT pathway
VÀitöskirjassa tutkitaan solujen vÀlisessÀ viestinnÀssÀ tÀrkeÀn solun sisÀisen JAK/STAT-tiedonsiirtoreitin sÀÀtelymekanismeja. Sytokiinit ovat elimistömme solujen tuottamia liukoisia vÀlittÀjÀaineita, jotka sÀÀtelevÀt monia biologisia tapahtumia kuten immuunijÀrjestelmÀn solujen jakautumista, erilaistumista ja aktiivisuutta. Sytokiinien vaikutukset vÀlittyvÀt kohdesolujen pinnalla olevien vastaanottimien eli reseptorien kautta. Sytokiinin sitoutuminen reseptoriinsa aikaansaa solun sisÀisten JAK-signalointiproteiinien aktivaation. Aktivoidut JAK-proteiinit fosforyloivat STAT-transkriptiotekijöissÀ tietyn tyrosiini-aminohappotÀhteen, jonka seurauksena STAT-proteiinit pariutuvat ja siirtyvÀt solun tumaan, missÀ ne sitoutuvat niille spesifisten kohdegeenien sÀÀtelyalueille vaikuttaen kyseisten geenien luentaan.
JAK/STAT-tiedonsiirtoreitin aktiivisuus on tarkoin sÀÀdelty reitin jokaisella tasolla. SÀÀtelyn hÀiriytyminen ja reitin virheellinen toiminta on yhteydessÀ moniin sairauksiin, kuten erilaisiin autoimmuunitauteihin ja syöpÀÀn. YmmÀrtÀÀksemme tarkemmin nÀiden sairauksien molekyylitason mekanismeja ja kehittÀÀksemme uusia hoitomuotoja nÀihin sairauksiin, on JAK/STAT-reitin sÀÀtelyjÀrjestelmien yksityiskohtainen tunteminen erittÀin tÀrkeÀÀ.
JAK/STAT-tiedonsiirtoreitti on sÀilynyt hyvin muuttumattomana elÀinten evoluutiossa ja ihmisen reittiÀ vastaava tiedonsiirtokaskadi toimii myös banaanikÀrpÀsen (Drosophila melanogaster) soluissa. Geneettisen muunneltavuutensa vuoksi banaanikÀrpÀnen on biolÀÀketieteellisessÀ tutkimuksessa hyvin laajasti hyödynnetty malliorganismi. VÀitöskirjatyössÀ on pyritty selvittÀmÀÀn banaanikÀrpÀstÀ malliorganismina kÀyttÀen uusia JAK/STAT-signalointireitin aktiivisuuteen vaikuttavia molekyylejÀ.
Sumolaatio on yleinen proteiinien translaationjÀlkeinen muokkaus, jossa kohdeproteiiniin liitetÀÀn SUMO-niminen pieni sÀÀtelyproteiini. VÀitöskirjan ensimmÀisessÀ osatyössÀ osoitettiin, ettÀ banaanikÀrpÀsen ainoa STAT-transkriptiotekijÀ, Stat92E, on sÀÀdelty sumolaation vÀlityksellÀ. SUMO:n löydettiin liittyvÀn Stat92E-proteiinissa lysiini 187 aminohappotÀhteeseen. LisÀksi sumolaation osoitettiin vaikuttavan negatiivisesti Stat92E-transkriptiotekijÀn aktiivisuuteen. Tutkimus osoittaa, ettÀ sumolaatio on STAT-transkriptiotekijöiden evolutiivisesti konservoitunut sÀÀtelymekanismi, sillÀ aiemmin myös ihmisen STAT1-transkriptiotekijÀn on osoitettu olevan sÀÀdelty sumolaation vÀlityksellÀ.
VÀitöskirjan kaksi muuta osatyötÀ pohjautuvat banaanikÀrpÀsen S2-solulinjassa tehtyyn RNA-hÀirintÀseulaan, jonka tarkoituksena on ollut löytÀÀ uusia JAK/STAT-reitin aktiivisuuteen vaikuttavia geenituotteita. Seulassa löydetyistÀ geenituotteista kaksi, Eye transformer ja Not4, valittiin tarkempiin jatkotutkimuksiin. ET-proteiinin osoitettiin toimivan banaanikÀrpÀsen JAK/STAT-reitin negatiivisena sÀÀtelijÀnÀ, vaikuttaen inhiboivasti Stat92E-proteiinin tyrosiinifosforylaatioon. BanaanikÀrpÀsen Not4-proteiinin löydettiin puolestaan vaikuttavan positiivisesti JAK/STAT-reitin sÀÀtelemien geenien ilmentymiseen. LisÀksi Not4-proteiinia vastaavan ihmisproteiinin, CNOT4:n, poisto RNA-hÀirinnÀllÀ ihmisen HeLa-solulinjasta alensi STAT1- ja STAT6 -vÀlitteisten kohdegeenien ilmentymistÀ. Jatkotutkimukset banaanikÀrpÀsen soluissa osoittivat, ettÀ Not4 kykenee sitoutumaan Stat92E proteiiniin ja, ettÀ Not4 vaaditaan Stat92E-proteiinin sitoutumiseen tietyn TotM-kohdegeeninsÀ sÀÀtelyalueelle.
TÀssÀ tutkimuksessa on löydetty banaanikÀrpÀsen Stat92E-transkriptiotekijÀn olevan negatiivisesti sÀÀdelty sumolaation kautta, osoittaen sumolaation olevan evoluutiossa sÀilynyt JAK/STAT-reitin sÀÀtelymekanismi. LisÀksi tutkimuksessa on karakterisoitu kaksi ennestÀÀn tuntematonta JAK/STAT-tiedonsiirtoreitin sÀÀtelijÀmolekyyliÀ; ET ja Not4/CNOT4. NÀmÀ tÀysin uudet löydökset luovat hyvÀn pohjan jatkotutkimuksille immuunijÀrjestelmÀn ja sen hÀiriöiden ymmÀrtÀmiseksi.Cytokines are secreted proteins or glycoproteins that are responsible for mediating cell to cell signals and orchestrating numerous biological events including the activation, proliferation and differentation of the cells of the immune system. Cytokine signals are mediated through specific transmembrane receptors on the surface of their target cells. The binding of a hematopoietic cytokine to its receptor triggers the activation of receptor-associated Janus kinases (JAKs). This is followed by the activation of their downstream targets, Signal transducers and activators of transcription (STATs) through tyrosine phosphorylation. Activated STATs dimerize and translocate to the nucleus, where they modulate the transcription of their target genes. The activity of this signaling cascade is under the control of regulatory proteins, such as Protein inhibitors of activated STAT (PIAS), Suppressors of cytokine signaling (SOCS) and various protein tyrosine phosphatases (PTPs). Moreover, JAKs and STATs are regulated by different post-translational modifications, like in the case of STAT1 and STAT5 through the covalent conjugation of a small ubiquitin-like modifier (SUMO).
The JAK/STAT pathway has been conserved throughout evolution. In the fruit fly, Drosophila melanogaster, the JAK/STAT cascade plays a crucial role in various developmental events as well as in the immune response, and it is activated by a set of secreted mediators called Unpaired (Upd). In this thesis Drosophila melanogaster was used as a model organism to study the regulation of the JAK/STAT pathway. The only known Drosophila STAT transcription factor, Stat92E, was shown to be modified with SUMO at a single lysine, K187. Mutating this SUMO conjugation site increased the Upd-induced transcriptional activity of Stat92E, suggesting that the sumoylation of Stat92E negatively regulates the Drosophila JAK/STAT pathway. This indicates that sumoylation is an evolutionary conserved regulatory mechanism of STAT-mediated signal transduction.
RNA interference (RNAi) has been found to function exceptionally well in Drosophila cells, and also in vivo in adult flies. A genome-wide RNAi screen was conducted in Drosophila S2 cells to reveal novel JAK/STAT pathway associated genes. As a result six potential JAK/STAT pathway regulating genes were found, of which two; Eye transformer (ET) and Not4 were studied in more detail. ET encodes a gp130-related transmembrane protein that was found to inhibit Upd-induced Stat92E tyrosine phosphorylation, thus it functions as a negative regulator of the Drosophila JAK/STAT pathway. RNAi of Not4 was found to repress the Drosophila JAK/STAT pathway target gene expression in Drosophila cells, indicating that Not4 is needed for the JAK/STAT pathway to function properly. Furthermore, overexpression of Not4 resulted in enhanced Stat92E-mediated gene responses, confirming Not4 as a positive regulator of the Drosophila JAK/STAT pathway. We found that Not4 is able to interact with Stat92E, but does not affect Stat92E tyrosine phosphorylation. Finally, our experiments indicated that Not4 is needed for Stat92E to properly bind to its target DNA sequence at the promoter of the stress gene TurandotM (TotM). The Not4 mammalian homologue CNOT4 was also shown to participate in STAT1- and STAT6-mediated gene expression in human cells, indicating that Not4/CNOT4 is an evolutionary conserved regulator of JAK/STAT signaling
Immuunivajeiden mekanismit - uuden ÀÀrellÀ
Vertaisarvioitu.SynnynnÀiset immuunivajeet ovat useimmiten yhden geenivirheen aiheuttamia immuunijÀrjestelmÀn sÀÀtelyhÀiriöitÀ, ja vasta osan kohdegeeni tunnetaan. Uusia immuunivajeita aiheuttavien geenimutaatioiden tunnistaminen on helpottunut, kun eksomi- ja genominsekvensointimenetelmÀt ovat kehittyneet ja kustannukset pienentyneet. Edelleen tarvitaan pitkÀjÀnteistÀ perustutkimustyötÀ mutaation aiheuttamien molekyylitason mekanismien ja tautiyhteyden selvittÀmiseksi. Eri mutaatiot samassa geenissÀ voivat aiheuttaa hyvin erilaisia ilmiasuja. Kahdenkymmenen vuoden aikana on löydetty lÀhes 380 uutta immuunivajetta ja lukuisia uusia ilmiasuja. Useat nÀistÀ aiheutuvat geenien transkriptiota sÀÀtelevien transkriptiotekijöiden muutoksista. NFKB1-geenin vallitsevasti periytyvÀt mutaatiot voivat aiheuttaa vasta-ainepuutoksen, autoimmuunisairauden tai inflammasomivÀlitteisen autoinflammaation. BACH2-geenin mutaatiot aiheuttavat immuunipuutos- ja autoimmuunisairauden hÀiritsemÀllÀ lymfosyyttien erilaistumista. CEBPE p.R219H-mutaatio saa aikaan uusien C/EBPΔ-kohdegeenien ilmentymisen ja "nonkanonisen" CASP4/5-inflammasomin yliaktiivisuuden.Peer reviewe
Effects of White Matter Hyperintensities on Verbal Fluency in Healthy Older Adults and MCI/AD
Background: White matter hyperintensities (WMHs) are markers for cerebrovascular pathology, which are frequently seen in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Verbal fluency is often impaired especially in AD, but little research has been conducted concerning the specific effects of WMH on verbal fluency in MCI and AD.Objective: Our aim was to examine the relationship between WMH and verbal fluency in healthy old age and pathological aging (MCI/AD) using quantified MRI data.Methods: Measures for semantic and phonemic fluency as well as quantified MRI imaging data from a sample of 42 cognitively healthy older adults and 44 patients with MCI/AD (total n = 86) were utilized. Analyses were performed both using the total sample that contained seven left-handed/ambidextrous participants, as well with a sample containing only right-handed participants (n = 79) in order to guard against possible confounding effects regarding language lateralization.Results: After controlling for age and education and adjusting for multiple correction, WMH in the bilateral frontal and parieto-occipital areas as well as the right temporal area were associated with semantic fluency in cognitively healthy and MCI/AD patients but only in the models containing solely right-handed participants.Conclusion: The results indicate that white matter pathology in both frontal and parieto-occipital cerebral areas may have associations with impaired semantic fluency in right-handed older adults. However, elevated levels of WMH do not seem to be associated with cumulative effects on verbal fluency impairment in patients with MCI or AD. Further studies on the subject are needed.</div
Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1
Background
STAT1 is an essential transcription factor for interferon-Îł-mediated gene responses. A distinct sumoylation consensus site (ÏKxE) 702IKTE705 is localized in the C-terminal region of STAT1, where Lys703 is a target for PIAS-induced SUMO modification. Several studies indicate that sumoylation has an inhibitory role on STAT1-mediated gene expression but the molecular mechanisms are not fully understood.
Results
Here, we have performed a structural and functional analysis of sumoylation in STAT1. We show that deconjugation of SUMO by SENP1 enhances the transcriptional activity of STAT1, confirming a negative regulatory effect of sumoylation on STAT1 activity. Inspection of molecular model indicated that consensus site is well exposed to SUMO-conjugation in STAT1 homodimer and that the conjugated SUMO moiety is directed towards DNA, thus able to form a sterical hindrance affecting promoter binding of dimeric STAT1. In addition, oligoprecipitation experiments indicated that sumoylation deficient STAT1 E705Q mutant has higher DNA-binding activity on STAT1 responsive gene promoters than wild-type STAT1. Furthermore, sumoylation deficient STAT1 E705Q mutant displayed enhanced histone H4 acetylation on interferon-Îł-responsive promoter compared to wild-type STAT1.
Conclusions
Our results suggest that sumoylation participates in regulation of STAT1 responses by modulating DNA-binding properties of STAT1.
Keywords:
Signal transduction; Transcription factors; Sumoylation; Signal transducers and activators of transcription (STATs); InterferonBioMed Central open acces
Characterization of Expanded Gamma Delta T Cells from Atypical X-SCID Patient Reveals Preserved Function and IL2RG-Mediated Signaling
Abnormally high gamma delta T cell numbers among individuals with atypical SCID have been reported but detailed immunopheno typing and functional characterization of these expanded gamma delta T cells are limited. We have previously reported atypical SCID phenotype caused by hypomorphic IL2RG (NM_000206.3) c.172C > T;p.(Pro58Ser) variant. Here, we have further investigated the index patient's abnormally large gamma delta T cell population in terms of function and phenotype by studying IL2RG cell surface expression, STAT tyrosine phosphorylation and blast formation in response to interleukin stimulation, immunophenotyping, TCRv gamma sequencing, and target cell killing. In contrast to his alpha beta T cells, the patient's gamma delta T cells showed normal IL2RG cell surface expression and normal or enhanced IL2RG-mediated signaling. V delta 2 + population was proportionally increased with a preponderance of memory phenotypes and high overall tendency towards perforin expression. The patient's gamma delta T cells showed enhanced cytotoxicity towards A549 cancer cells. His TCRv gamma repertoire was versatile but sequencing of IL2RG revealed a novel c.534C > A; p.(Phe178Leu) somatic missense variant restricted to gamma delta T cells. Over time this variant became predominant in gamma delta T cells, though initially present only in part of them. IL2RG-Pro58Ser/Phe178Leu variant showed higher cell surface expression compared to IL2RG-Pro58Ser variant in stable HEK293 cell lines, suggesting that somatic p.(Phe178Leu) variant may at least partially rescue the pathogenic effect of germline p.(Pro58Ser) variant. In conclusion, our report indicates that expansion of gamma delta T cells associated with atypical SCID needs further studying and cannot exclusively be deemed as a homeostatic response to low numbers of conventional T cells.Peer reviewe
Novel Hemizygous IL2RG p.(Pro58Ser) Mutation Impairs IL-2 Receptor Complex Expression on Lymphocytes Causing X-Linked Combined Immunodeficiency
Hypomorphic IL2RG mutations may lead to milder phenotypes than X-SCID, named variably as atypical X-SCID or X-CID. We report an 11-year-old boy with a novel c. 172C>T;p.(Pro58Ser) mutation in IL2RG, presenting with atypical X-SCID phenotype. We also review the growing number of hypomorphic IL2RG mutations causing atypical X-SCID. We studied the patient's clinical phenotype, B, T, NK, and dendritic cell phenotypes, IL2RG and CD25 cell surface expression, and IL-2 target gene expression, STAT tyrosine phosphorylation, PBMC proliferation, and blast formation in response to IL-2 stimulation, as well as protein-protein interactions of the mutated IL2RG by BioID proximity labeling. The patient suffered from recurrent upper and lower respiratory tract infections, bronchiectasis, and reactive arthritis. His total lymphocyte counts have remained normal despite skewed T and B cells subpopulations, with very low numbers of plasmacytoid dendritic cells. Surface expression of IL2RG was reduced on his lymphocytes. This led to impaired STAT tyrosine phosphorylation in response to IL-2 and IL-21, reduced expression of IL-2 target genes in patient CD4+ T cells, and reduced cell proliferation in response to IL-2 stimulation. BioID proximity labeling showed aberrant interactions between mutated IL2RG and ER/Golgi proteins causing mislocalization of the mutated IL2RG to the ER/Golgi interface. In conclusion, IL2RG p.(Pro58Ser) causes X-CID. Failure of IL2RG plasma membrane targeting may lead to atypical X-SCID. We further identified another carrier of this mutation from newborn SCID screening, lost to closer scrutiny.Peer reviewe
BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency.
The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized
Evolutionary Conserved Regulatory Mechanisms of the JAK/STAT pathway
VÀitöskirjassa tutkitaan solujen vÀlisessÀ viestinnÀssÀ tÀrkeÀn solun sisÀisen JAK/STAT-tiedonsiirtoreitin sÀÀtelymekanismeja. Sytokiinit ovat elimistömme solujen tuottamia liukoisia vÀlittÀjÀaineita, jotka sÀÀtelevÀt monia biologisia tapahtumia kuten immuunijÀrjestelmÀn solujen jakautumista, erilaistumista ja aktiivisuutta. Sytokiinien vaikutukset vÀlittyvÀt kohdesolujen pinnalla olevien vastaanottimien eli reseptorien kautta. Sytokiinin sitoutuminen reseptoriinsa aikaansaa solun sisÀisten JAK-signalointiproteiinien aktivaation. Aktivoidut JAK-proteiinit fosforyloivat STAT-transkriptiotekijöissÀ tietyn tyrosiini-aminohappotÀhteen, jonka seurauksena STAT-proteiinit pariutuvat ja siirtyvÀt solun tumaan, missÀ ne sitoutuvat niille spesifisten kohdegeenien sÀÀtelyalueille vaikuttaen kyseisten geenien luentaan.
JAK/STAT-tiedonsiirtoreitin aktiivisuus on tarkoin sÀÀdelty reitin jokaisella tasolla. SÀÀtelyn hÀiriytyminen ja reitin virheellinen toiminta on yhteydessÀ moniin sairauksiin, kuten erilaisiin autoimmuunitauteihin ja syöpÀÀn. YmmÀrtÀÀksemme tarkemmin nÀiden sairauksien molekyylitason mekanismeja ja kehittÀÀksemme uusia hoitomuotoja nÀihin sairauksiin, on JAK/STAT-reitin sÀÀtelyjÀrjestelmien yksityiskohtainen tunteminen erittÀin tÀrkeÀÀ.
JAK/STAT-tiedonsiirtoreitti on sÀilynyt hyvin muuttumattomana elÀinten evoluutiossa ja ihmisen reittiÀ vastaava tiedonsiirtokaskadi toimii myös banaanikÀrpÀsen (Drosophila melanogaster) soluissa. Geneettisen muunneltavuutensa vuoksi banaanikÀrpÀnen on biolÀÀketieteellisessÀ tutkimuksessa hyvin laajasti hyödynnetty malliorganismi. VÀitöskirjatyössÀ on pyritty selvittÀmÀÀn banaanikÀrpÀstÀ malliorganismina kÀyttÀen uusia JAK/STAT-signalointireitin aktiivisuuteen vaikuttavia molekyylejÀ.
Sumolaatio on yleinen proteiinien translaationjÀlkeinen muokkaus, jossa kohdeproteiiniin liitetÀÀn SUMO-niminen pieni sÀÀtelyproteiini. VÀitöskirjan ensimmÀisessÀ osatyössÀ osoitettiin, ettÀ banaanikÀrpÀsen ainoa STAT-transkriptiotekijÀ, Stat92E, on sÀÀdelty sumolaation vÀlityksellÀ. SUMO:n löydettiin liittyvÀn Stat92E-proteiinissa lysiini 187 aminohappotÀhteeseen. LisÀksi sumolaation osoitettiin vaikuttavan negatiivisesti Stat92E-transkriptiotekijÀn aktiivisuuteen. Tutkimus osoittaa, ettÀ sumolaatio on STAT-transkriptiotekijöiden evolutiivisesti konservoitunut sÀÀtelymekanismi, sillÀ aiemmin myös ihmisen STAT1-transkriptiotekijÀn on osoitettu olevan sÀÀdelty sumolaation vÀlityksellÀ.
VÀitöskirjan kaksi muuta osatyötÀ pohjautuvat banaanikÀrpÀsen S2-solulinjassa tehtyyn RNA-hÀirintÀseulaan, jonka tarkoituksena on ollut löytÀÀ uusia JAK/STAT-reitin aktiivisuuteen vaikuttavia geenituotteita. Seulassa löydetyistÀ geenituotteista kaksi, Eye transformer ja Not4, valittiin tarkempiin jatkotutkimuksiin. ET-proteiinin osoitettiin toimivan banaanikÀrpÀsen JAK/STAT-reitin negatiivisena sÀÀtelijÀnÀ, vaikuttaen inhiboivasti Stat92E-proteiinin tyrosiinifosforylaatioon. BanaanikÀrpÀsen Not4-proteiinin löydettiin puolestaan vaikuttavan positiivisesti JAK/STAT-reitin sÀÀtelemien geenien ilmentymiseen. LisÀksi Not4-proteiinia vastaavan ihmisproteiinin, CNOT4:n, poisto RNA-hÀirinnÀllÀ ihmisen HeLa-solulinjasta alensi STAT1- ja STAT6 -vÀlitteisten kohdegeenien ilmentymistÀ. Jatkotutkimukset banaanikÀrpÀsen soluissa osoittivat, ettÀ Not4 kykenee sitoutumaan Stat92E proteiiniin ja, ettÀ Not4 vaaditaan Stat92E-proteiinin sitoutumiseen tietyn TotM-kohdegeeninsÀ sÀÀtelyalueelle.
TÀssÀ tutkimuksessa on löydetty banaanikÀrpÀsen Stat92E-transkriptiotekijÀn olevan negatiivisesti sÀÀdelty sumolaation kautta, osoittaen sumolaation olevan evoluutiossa sÀilynyt JAK/STAT-reitin sÀÀtelymekanismi. LisÀksi tutkimuksessa on karakterisoitu kaksi ennestÀÀn tuntematonta JAK/STAT-tiedonsiirtoreitin sÀÀtelijÀmolekyyliÀ; ET ja Not4/CNOT4. NÀmÀ tÀysin uudet löydökset luovat hyvÀn pohjan jatkotutkimuksille immuunijÀrjestelmÀn ja sen hÀiriöiden ymmÀrtÀmiseksi.Cytokines are secreted proteins or glycoproteins that are responsible for mediating cell to cell signals and orchestrating numerous biological events including the activation, proliferation and differentation of the cells of the immune system. Cytokine signals are mediated through specific transmembrane receptors on the surface of their target cells. The binding of a hematopoietic cytokine to its receptor triggers the activation of receptor-associated Janus kinases (JAKs). This is followed by the activation of their downstream targets, Signal transducers and activators of transcription (STATs) through tyrosine phosphorylation. Activated STATs dimerize and translocate to the nucleus, where they modulate the transcription of their target genes. The activity of this signaling cascade is under the control of regulatory proteins, such as Protein inhibitors of activated STAT (PIAS), Suppressors of cytokine signaling (SOCS) and various protein tyrosine phosphatases (PTPs). Moreover, JAKs and STATs are regulated by different post-translational modifications, like in the case of STAT1 and STAT5 through the covalent conjugation of a small ubiquitin-like modifier (SUMO).
The JAK/STAT pathway has been conserved throughout evolution. In the fruit fly, Drosophila melanogaster, the JAK/STAT cascade plays a crucial role in various developmental events as well as in the immune response, and it is activated by a set of secreted mediators called Unpaired (Upd). In this thesis Drosophila melanogaster was used as a model organism to study the regulation of the JAK/STAT pathway. The only known Drosophila STAT transcription factor, Stat92E, was shown to be modified with SUMO at a single lysine, K187. Mutating this SUMO conjugation site increased the Upd-induced transcriptional activity of Stat92E, suggesting that the sumoylation of Stat92E negatively regulates the Drosophila JAK/STAT pathway. This indicates that sumoylation is an evolutionary conserved regulatory mechanism of STAT-mediated signal transduction.
RNA interference (RNAi) has been found to function exceptionally well in Drosophila cells, and also in vivo in adult flies. A genome-wide RNAi screen was conducted in Drosophila S2 cells to reveal novel JAK/STAT pathway associated genes. As a result six potential JAK/STAT pathway regulating genes were found, of which two; Eye transformer (ET) and Not4 were studied in more detail. ET encodes a gp130-related transmembrane protein that was found to inhibit Upd-induced Stat92E tyrosine phosphorylation, thus it functions as a negative regulator of the Drosophila JAK/STAT pathway. RNAi of Not4 was found to repress the Drosophila JAK/STAT pathway target gene expression in Drosophila cells, indicating that Not4 is needed for the JAK/STAT pathway to function properly. Furthermore, overexpression of Not4 resulted in enhanced Stat92E-mediated gene responses, confirming Not4 as a positive regulator of the Drosophila JAK/STAT pathway. We found that Not4 is able to interact with Stat92E, but does not affect Stat92E tyrosine phosphorylation. Finally, our experiments indicated that Not4 is needed for Stat92E to properly bind to its target DNA sequence at the promoter of the stress gene TurandotM (TotM). The Not4 mammalian homologue CNOT4 was also shown to participate in STAT1- and STAT6-mediated gene expression in human cells, indicating that Not4/CNOT4 is an evolutionary conserved regulator of JAK/STAT signaling