53 research outputs found
The Efficiency of Gravitational Bremsstrahlung Production in the Collision of Two Schwarzschild Black Holes
We examine the efficiency of gravitational bremsstrahlung production in the
process of head-on collision of two boosted Schwarzschild black holes. We
constructed initial data for the characteristic initial value problem in
Robinson-Trautman spacetimes, that represent two instantaneously stationary
Schwarzschild black holes in motion towards each other with the same velocity.
The Robinson-Trautman equation was integrated for these initial data using a
numerical code based on the Galerkin method. The final resulting configuration
is a boosted black hole with Bondi mass greater than the sum of the individual
mass of each initial black hole. Two relevant aspects of the process are
presented. The first relates the efficiency of the energy extraction
by gravitational wave emission to the mass of the final black hole. This
relation is fitted by a distribution function of non-extensive thermostatistics
with entropic parameter ; the result extends and validates
analysis based on the linearized theory of gravitational wave emission. The
second is a typical bremsstrahlung angular pattern in the early period of
emission at the wave zone, a consequence of the deceleration of the black holes
as they coalesce; this pattern evolves to a quadrupole form for later times.Comment: 16 pages, 4 figures, to appear in Int. J. Modern Phys. D (2008
Navigating through digital folders uses the same brain structures as real world navigation
Efficient storage and retrieval of digital data is the focus of much commercial and academic attention. With personal computers, there are two main ways to retrieve files: hierarchical navigation and query-based search. In navigation, users move down their virtual folder hierarchy until they reach the folder in which the target item is stored. When searching, users first generate a query specifying some property of the target file (e.g., a word it contains), and then select the relevant file when the search engine returns a set of results. Despite advances in search technology, users prefer retrieving files using virtual folder navigation, rather than the more flexible query-based search. Using fMRI we provide an explanation for this phenomenon by demonstrating that folder navigation results in activation of the posterior limbic (including the retrosplenial cortex) and parahippocampal regions similar to that previously observed during real-world navigation in both animals and humans. In contrast, search activates the left inferior frontal gyrus, commonly observed in linguistic processing. We suggest that the preference for navigation may be due to the triggering of automatic object finding routines and lower dependence on linguistic processing. We conclude with suggestions for future computer systems design
Does spatial locative comprehension predict landmark-based navigation?
In the present study we investigated the role of spatial locative comprehension in learning and retrieving pathways when landmarks were available and when they were absent in a sample of typically developing 6- to 11-year-old children. Our results show that the more proficient children are in understanding spatial locatives the more they are able to learn pathways, retrieve them after a delay and represent them on a map when landmarks are present in the environment. These findings suggest that spatial language is crucial when individuals rely on sequences of landmarks to drive their navigation towards a given goal but that it is not involved when navigational representations based on the geometrical shape of the environment or the coding of body movements are sufficient for memorizing and recalling short pathways
Fast reproducible identification and large-scale databasing of individual functional cognitive networks
<p>Abstract</p> <p>Background</p> <p>Although cognitive processes such as reading and calculation are associated with reproducible cerebral networks, inter-individual variability is considerable. Understanding the origins of this variability will require the elaboration of large multimodal databases compiling behavioral, anatomical, genetic and functional neuroimaging data over hundreds of subjects. With this goal in mind, we designed a simple and fast acquisition procedure based on a 5-minute functional magnetic resonance imaging (fMRI) sequence that can be run as easily and as systematically as an anatomical scan, and is therefore used in every subject undergoing fMRI in our laboratory. This protocol captures the cerebral bases of auditory and visual perception, motor actions, reading, language comprehension and mental calculation at an individual level.</p> <p>Results</p> <p>81 subjects were successfully scanned. Before describing inter-individual variability, we demonstrated in the present study the reliability of individual functional data obtained with this short protocol. Considering the anatomical variability, we then needed to correctly describe individual functional networks in a voxel-free space. We applied then non-voxel based methods that automatically extract main features of individual patterns of activation: group analyses performed on these individual data not only converge to those reported with a more conventional voxel-based random effect analysis, but also keep information concerning variance in location and degrees of activation across subjects.</p> <p>Conclusion</p> <p>This collection of individual fMRI data will help to describe the cerebral inter-subject variability of the correlates of some language, calculation and sensorimotor tasks. In association with demographic, anatomical, behavioral and genetic data, this protocol will serve as the cornerstone to establish a hybrid database of hundreds of subjects suitable to study the range and causes of variation in the cerebral bases of numerous mental processes.</p
Assessing learning and memory in pigs
In recent years, there has been a surge of interest in (mini) pigs (Sus scrofa) as species for cognitive research. A major reason for this is their physiological and anatomical similarity with humans. For example, pigs possess a well-developed, large brain. Assessment of the learning and memory functions of pigs is not only relevant to human research but also to animal welfare, given the nature of current farming practices and the demands they make on animal health and behavior. In this article, we review studies of pig cognition, focusing on the underlying processes and mechanisms, with a view to identifying. Our goal is to aid the selection of appropriate cognitive tasks for research into pig cognition. To this end, we formulated several basic criteria for pig cognition tests and then applied these criteria and knowledge about pig-specific sensorimotor abilities and behavior to evaluate the merits, drawbacks, and limitations of the different types of tests used to date. While behavioral studies using (mini) pigs have shown that this species can perform learning and memory tasks, and much has been learned about pig cognition, results have not been replicated or proven replicable because of the lack of validated, translational behavioral paradigms that are specially suited to tap specific aspects of pig cognition. We identified several promising types of tasks for use in studies of pig cognition, such as versatile spatial free-choice type tasks that allow the simultaneous measurement of several behavioral domains. The use of appropriate tasks will facilitate the collection of reliable and valid data on pig cognition
Impact of the control for corrupted diffusion tensor imaging data in comparisons at the group level : an application in Huntington disease
This work was supported by the European Union under the Seventh Framework programme– PADDINGTON Project, Grant Agreement No. 261358, and the European Huntington’s Disease Network (EHDN), project 070 – PADDINGTON.Background: Corrupted gradient directions (GD) in diffusion weighted images may seriously affect reliability of diffusion tensor imaging (DTI)-based comparisons at the group level. In the present study we employed a quality control (QC) algorithm to eliminate corrupted gradient directions from DTI data. We then assessed effects of this procedure on comparisons between Huntington disease (HD) subjects and controls at the group level.Methods: Sixty-one HD patients in early stages and forty matched healthy controls were studied in a longitudinal design (baseline and two follow-ups at three time points over 15 months), in a multicenter setting with similar acquisition protocols on four different MR scanners at four European study sites. A QC algorithm was used to identify corrupted GD in DTI data sets. Differences in fractional anisotropy (FA) maps at the group level with and without elimination of corrupted GD were analyzed.Results: The elimination of corrupted GD had an impact on individual FA maps as well as on cross-sectional group comparisons between HD subjects and controls. Following application of the QC algorithm, less small clusters of FA changes were observed, compared to the analysis without QC. However, the main pattern of regional reductions and increases in FA values with and without QC-based elimination of corrupted GD was unchanged.Conclusion: An impact on the result patterns of the comparison of FA maps between HD subjects and controls was observed depending on whether QC-based elimination of corrupted GD was performed. QC-based elimination of corrupted GD in DTI scans reduces the risk of type I and type II errors in cross-sectional group comparison of FA maps contributing to an increase in reliability and stability of group comparisons.Publisher PDFPeer reviewe
- …