96 research outputs found

    ПАРАДИГМА ПОЭТИЧЕСКОГО ВООБРАЖЕНИЯ В РАННЕМ ТВОРЧЕСТВЕ А. ДЕ ЛАМАРТИНА (анализ творческой концепции в традиции Г. Башляра)

    Get PDF
    В статье ранние произведения А. де Ламартина рассматриваются в аналитической традиции Г. Башляра. Стихотворения, написанные под влиянием Ж.Ж. Руссо в новой мифопоэтической форме, стали романтической актуализацией стихии человеческих переживаний в их связи со стихиями природы и трансендентным бытием

    Unary Pushdown Automata and Straight-Line Programs

    Full text link
    We consider decision problems for deterministic pushdown automata over a unary alphabet (udpda, for short). Udpda are a simple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed membership problems are P-complete, and inclusion is coNP-complete. Our upper bounds are based on a translation theorem between udpda and straight-line programs over the binary alphabet (SLPs). We show that the characteristic sequence of any udpda can be represented as a pair of SLPs---one for the prefix, one for the lasso---that have size linear in the size of the udpda and can be computed in polynomial time. Hence, decision problems on udpda are reduced to decision problems on SLPs. Conversely, any SLP can be converted in logarithmic space into a udpda, and this forms the basis for our lower bound proofs. We show coNP-hardness of the ordered matching problem for SLPs, from which we derive coNP-hardness for inclusion. In addition, we complete the complexity landscape for unary nondeterministic pushdown automata by showing that the universality problem is Π2P\Pi_2 \mathrm P-hard, using a new class of integer expressions. Our techniques have applications beyond udpda. We show that our results imply Π2P\Pi_2 \mathrm P-completeness for a natural fragment of Presburger arithmetic and coNP lower bounds for compressed matching problems with one-character wildcards

    К вопросу об оценке противокоррозионной эффективности ингибиторов атмосферной коррозии

    Get PDF
    Розробка, дослідження захисних антикорозійних властивостей і визначення механізму дії інгібіторів атмосферної корозії, призначених для захисту металу з тонкими шарами іржі, потребує проведення натурних та прискорених корозійних випробувань. Оскільки у більшості випадків цей процес довготривалий, то для швидкого визначення антикорозійної ефективності інгібіторів корозії розроблена методика їх прискорених випробувань. Методика полягає у визначенні захисних властивостей інгібітору шляхом зняття поляризаційних кривих у нейтральному середовищі на металі з продуктами атмосферної корозії та захисною плівкою.Development, research of protective anticorrosive properties and determination of mechanism of action of atmospheric corrosion inhibitors for the protection of metal with thin layers of rust demands carrying out of the natural and accelerated corrosion tests. As in most cases this process long, for rapid determination of anticorrosive efficiency of corrosion inhibitors the new method of their accelerated tests is developed. A method consists in definition of protective ability by removal of polarization curves on a metal with the products of atmospheric corrosion and protective film in a neutral environment

    On the equivalence of game and denotational semantics for the probabilistic mu-calculus

    Full text link
    The probabilistic (or quantitative) modal mu-calculus is a fixed-point logic de- signed for expressing properties of probabilistic labeled transition systems (PLTS). Two semantics have been studied for this logic, both assigning to every process state a value in the interval [0,1] representing the probability that the property expressed by the formula holds at the state. One semantics is denotational and the other is a game semantics, specified in terms of two-player stochastic games. The two semantics have been proved to coincide on all finite PLTS's, but the equivalence of the two semantics on arbitrary models has been open in literature. In this paper we prove that the equivalence indeed holds for arbitrary infinite models, and thus our result strengthens the fruitful connection between denotational and game semantics. Our proof adapts the unraveling or unfolding method, a general proof technique for proving result of parity games by induction on their complexity

    Graphs Identified by Logics with Counting

    Full text link
    We classify graphs and, more generally, finite relational structures that are identified by C2, that is, two-variable first-order logic with counting. Using this classification, we show that it can be decided in almost linear time whether a structure is identified by C2. Our classification implies that for every graph identified by this logic, all vertex-colored versions of it are also identified. A similar statement is true for finite relational structures. We provide constructions that solve the inversion problem for finite structures in linear time. This problem has previously been shown to be polynomial time solvable by Martin Otto. For graphs, we conclude that every C2-equivalence class contains a graph whose orbits are exactly the classes of the C2-partition of its vertex set and which has a single automorphism witnessing this fact. For general k, we show that such statements are not true by providing examples of graphs of size linear in k which are identified by C3 but for which the orbit partition is strictly finer than the Ck-partition. We also provide identified graphs which have vertex-colored versions that are not identified by Ck.Comment: 33 pages, 8 Figure

    Identifiers in Registers - Describing Network Algorithms with Logic

    Full text link
    We propose a formal model of distributed computing based on register automata that captures a broad class of synchronous network algorithms. The local memory of each process is represented by a finite-state controller and a fixed number of registers, each of which can store the unique identifier of some process in the network. To underline the naturalness of our model, we show that it has the same expressive power as a certain extension of first-order logic on graphs whose nodes are equipped with a total order. Said extension lets us define new functions on the set of nodes by means of a so-called partial fixpoint operator. In spirit, our result bears close resemblance to a classical theorem of descriptive complexity theory that characterizes the complexity class PSPACE in terms of partial fixpoint logic (a proper superclass of the logic we consider here).Comment: 17 pages (+ 17 pages of appendices), 1 figure (+ 1 figure in the appendix

    Integer Vector Addition Systems with States

    Full text link
    This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ZVASS) and extensions and restrictions thereof. A ZVASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ZVASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ZVASS while retaining NP-completness of both coverability and reachability.Comment: 17 pages, 2 figure

    Genome Sequences of Rare Human Enterovirus Genotypes Recovered from Clinical Respiratory Samples in Bern, Switzerland.

    Get PDF
    We report on genomic sequences of human enteroviruses (EVs) that were identified in respiratory samples in Bern, Switzerland, in 2018 and 2019. Besides providing sequences for coxsackievirus A2, echovirus 11, and echovirus 30, we determined the sequences of rare EV-D68 and EV-C105 genotypes circulating in Switzerland

    Randomisation and Derandomisation in Descriptive Complexity Theory

    Full text link
    We study probabilistic complexity classes and questions of derandomisation from a logical point of view. For each logic L we introduce a new logic BPL, bounded error probabilistic L, which is defined from L in a similar way as the complexity class BPP, bounded error probabilistic polynomial time, is defined from PTIME. Our main focus lies on questions of derandomisation, and we prove that there is a query which is definable in BPFO, the probabilistic version of first-order logic, but not in Cinf, finite variable infinitary logic with counting. This implies that many of the standard logics of finite model theory, like transitive closure logic and fixed-point logic, both with and without counting, cannot be derandomised. Similarly, we present a query on ordered structures which is definable in BPFO but not in monadic second-order logic, and a query on additive structures which is definable in BPFO but not in FO. The latter of these queries shows that certain uniform variants of AC0 (bounded-depth polynomial sized circuits) cannot be derandomised. These results are in contrast to the general belief that most standard complexity classes can be derandomised. Finally, we note that BPIFP+C, the probabilistic version of fixed-point logic with counting, captures the complexity class BPP, even on unordered structures
    corecore