4 research outputs found

    Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model

    No full text
    Abstract Antibody therapies targeting the epithelial growth factor receptor (EGFR) are being increasingly applied in cancer therapy. However, increased tumour containment correlates proportionally with the severity of well-known adverse events in skin. The prediction of the latter is not currently possible in conventional in vitro systems and limited in existing laboratory animal models. Here we established a repeated dose “safficacy” test assay for the simultaneous generation of safety and efficacy data. Therefore, a commercially available multi-organ chip platform connecting two organ culture compartments was adapted for the microfluidic co-culture of human H292 lung cancer microtissues and human full-thickness skin equivalents. Repeated dose treatment of the anti-EGFR-antibody cetuximab showed an increased pro-apoptotic related gene expression in the tumour microtissues. Simultaneously, proliferative keratinocytes in the basal layer of the skin microtissues were eliminated, demonstrating crucial inhibitory effects on the physiological skin cell turnover. Furthermore, antibody exposure modulated the release of CXCL8 and CXCL10, reflecting the pattern changes seen in antibody-treated patients. The combination of a metastatic tumour environment with a miniaturized healthy organotypic human skin equivalent make this “safficacy” assay an ideal tool for evaluation of the therapeutic index of EGFR inhibitors and other promising oncology candidates

    Experimental Transmission of Plasmodium malariae to Anopheles gambiae

    No full text
    Our current knowledge of the clinical burden, biology, and transmission of Plasmodium malariae is extremely scarce. To start addressing some of those questions, we experimentally infected Anopheles gambiae mosquitoes with fresh P. malariae isolates obtained from asymptomatic individuals in Lambaréné, Gabon. The proportion of mosquitoes infected via direct membrane feeding assay with either P. malariae monoinfections (16% [19 of 121]) or coinfections (28% [31 of 112]) was higher after serum replacement than in parallel groups without serum replacement (4% [4 of 102] and 4% [2 of 45], respectively; P < .01). Our results show that isolates from asymptomatic carriers can be used for experimental studies of P. malariae transmission

    Clonally resolved single-cell multi-omics identifies routes of cellular differentiation in acute myeloid leukemia

    No full text
    Inter-patient variability and the similarity of healthy and leukemic stem cells (LSCs) have impeded the characterization of LSCs in acute myeloid leukemia (AML) and their differentiation landscape. Here, we introduce CloneTracer, a novel method that adds clonal resolution to single-cell RNA-seq datasets. Applied to samples from 19 AML patients, CloneTracer revealed routes of leukemic differentiation. Although residual healthy and preleukemic cells dominated the dormant stem cell compartment, active LSCs resembled their healthy counterpart and retained erythroid capacity. By contrast, downstream myeloid progenitors constituted a highly aberrant, disease-defining compartment: their gene expression and differentiation state affected both the chemotherapy response and leukemia's ability to differentiate into transcriptomically normal monocytes. Finally, we demonstrated the potential of CloneTracer to identify surface markers misregulated specifically in leukemic cells. Taken together, CloneTracer reveals a differentiation landscape that mimics its healthy counterpart and may determine biology and therapy response in AML.ISSN:1934-5909ISSN:1875-977
    corecore