63 research outputs found
Haze and light diffraction of dielectric line-gratings
The optical characterization of dielectric periodic line-gratings for which
the period of the grating is significantly larger than the probing wavelength
is investigated experimentally, numerically, and analytically. The experimental
diffraction efficiencies are analyzed in transmission with the help of a
closed-form approximate solution within a single scattering picture. In
particular, the angular width of significant scattering and the haze are
analyzed for samples of increasing grating profile amplitude.Comment: 13 pages, 9 figure
Gain properties of dye-doped polymer thin films
Hybrid pumping appears as a promising compromise in order to reach the much
coveted goal of an electrically pumped organic laser. In such configuration the
organic material is optically pumped by an electrically pumped inorganic device
on chip. This engineering solution requires therefore an optimization of the
organic gain medium under optical pumping. Here, we report a detailed study of
the gain features of dye-doped polymer thin films. In particular we introduce
the gain efficiency , in order to facilitate comparison between different
materials and experimental conditions. The gain efficiency was measured with
various setups (pump-probe amplification, variable stripe length method, laser
thresholds) in order to study several factors which modify the actual gain of a
layer, namely the confinement factor, the pump polarization, the molecular
anisotropy, and the re-absorption. For instance, for a 600 nm thick 5 wt\% DCM
doped PMMA layer, the different experimental approaches give a consistent value
80 cm.MW. On the contrary, the usual model predicting the gain
from the characteristics of the material leads to an overestimation by two
orders of magnitude, which raises a serious problem in the design of actual
devices. In this context, we demonstrate the feasibility to infer the gain
efficiency from the laser threshold of well-calibrated devices. Besides,
temporal measurements at the picosecond scale were carried out to support the
analysis.Comment: 15 pages, 17 figure
Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching
International audienceConcentration quenching is a major impediment to efficient organic light-emitting devices. We herein report on Organic Light-Emitting Diodes (OLEDs) based on a fluorescent amorphous red-emitting starbust triarylamine molecule (4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene, named FVIN), exhibiting a very small sensitivity to concentration quenching. OLEDs are fabricated with various doping levels of FVIN into Alq3, and show a remarkably stable external quantum efficiency of 1.5% for doping rates ranging from 5% up to 40%, which strongly relaxes the technological constraints on the doping accuracy. An efficiency of 1% is obtained for a pure undoped active region, along with deep red emission (x=0.6; y=0.35 CIE coordinates). A comparison of FVIN with the archetypal DCM dye is presented in an identical multilayer OLED structure
Trace formula for dielectric cavities II: Regular, pseudo-integrable, and chaotic examples
Dielectric resonators are open systems particularly interesting due to their
wide range of applications in optics and photonics. In a recent paper [PRE,
vol. 78, 056202 (2008)] the trace formula for both the smooth and the
oscillating parts of the resonance density was proposed and checked for the
circular cavity. The present paper deals with numerous shapes which would be
integrable (square, rectangle, and ellipse), pseudo-integrable (pentagon) and
chaotic (stadium), if the cavities were closed (billiard case). A good
agreement is found between the theoretical predictions, the numerical
simulations, and experiments based on organic micro-lasers.Comment: 18 pages, 32 figure
An insight into polarization states of solid-state organic lasers
The polarization states of lasers are crucial issues both for practical
applications and fundamental research. In general, they depend in a combined
manner on the properties of the gain material and on the structure of the
electromagnetic modes. In this paper, we address this issue in the case of
solid-state organic lasers, a technology which enables to vary independently
gain and mode properties. Different kinds of resonators are investigated:
in-plane micro-resonators with Fabry-Perot, square, pentagon, stadium, disk,
and kite shapes, and external vertical resonators. The degree of polarization P
is measured in each case. It is shown that although TE modes prevail generally
(P>0), kite-shaped micro-laser generates negative values for P, i.e. a flip of
the dominant polarization which becomes mostly TM polarized. We at last
investigated two degrees of freedom that are available to tailor the
polarization of organic lasers, in addition to the pump polarization and the
resonator geometry: upon using resonant energy transfer (RET) or upon pumping
the laser dye to an higher excited state. We then demonstrate that
significantly lower P factors can be obtained.Comment: 12 pages, 12 figure
Laser à semiconducteur à 852 nm bifrequence pompé optiquement pour les horloges atomiques CPT (poster)
National audienceNous présentons un laser à semiconducteur en cavité externe pompé optiquement, émettant sur deux fréquences optiques polarisées perpendiculairement, destiné au piégeage cohérent d'atomes (CPT) de Cs. L'émission est accordable autour de 852 nm. La différence de fréquence est ajustée grâce à une lame électro-optique autour de 9,2 GHz. La longueur d'onde du mode ordinaire est stabilisée sur la raie D2 du Cs et la différence de fréquence est asservie sur un signal de référence RF. En fonctionnement stabilisé, nous caractérisons les sources de bruits du laser afin d'évaluer les performances du laser en vue de son application dans une horloge atomique CPT
Generation of high purity microwave signal from a dual-frequency OP-VECSEL (orale)
International audienceCoherent population trapping (CPT) is an interesting technique for the development of compact atomic frequency references. We describe an innovating laser source for the production of the two cross-polarized coherent laser fields which are necessary in CPT-based atomic clocks. It relies on the dual-frequency and dual-polarization operation of an optically-pumped vertical external-cavity semiconductor laser. This particular laser emission is induced by intracavity birefringent components which produce a controllable phase anisotropy within the laser cavity and force emission on two cross-polarized longitudinal modes. The laser emission is tuned at the Cs D2 line (λ = 852.14 nm), and the frequency difference ∆ν between the two laser modes is tunable in the microwave range. The laser line wavelength is stabilized onto an atomic hyperfine transition, and concurrently the frequency difference is locked to an ultra-low noise RF oscillator at 9.2 GHz. The high spectral purity of the optically-carried microwave signal resulting from the beatnote of the two cross-polarized laser lines is assessed through its narrow spectral linewidth (<30 Hz) as well as its low phase noise (≤ -100 dBrad2/Hz). The performance of this laser source is already adequate for the interrogation of atoms in a CPT atomic clock, and should result in an estimated relative stability of 3.10-13τ-1/2 - one order of magnitude better than commercial atomic clocks
Evaluation of the noise properties of a dual-frequency VECSEL for compact Cs atomic clocks (Poster)
International audienceWe evaluate a dual-frequency and dual-polarization optically-pumped semiconductor laser emitting at 852 nm as a new laser source for compact atomic clocks based on the coherent population trapping (CPT) technique. The frequency difference between the laser modes is tunable to 9.2 GHz corresponding to the ground state hyperfine-split of Cs. Impact of the laser noise has been investigated. Laser relative intensity noise is limited by the pump-RIN transfer to a level of-110 dB/Hz. Laser frequency noise shows excess mechanical and technical noise resulting in a laser linewidth of 1 MHz at 1 s in lock operation. The noise performance and spectral properties of the laser are already adequate to realize CPT experiments and should result in Allan standard-deviation of the clock below 1 × 10-12 at 1 second
High-purity microwave signal from a dual-frequency semiconductor laser for CPT atomic clocks (poster)
Coherent population trapping (CPT) of metal-alkali atoms is an interesting technique for the development of compact atomic frequency references; it relies on the excitation of the atoms by two phase-coherent laser fields. We describe the design and operation of an innovating dual-frequency laser source dedicated to Cs CPT atomic clocks, based on the direct dual-frequency and dual-polarization operation of an optically-pumped semiconductor laser at 852 nm. The phase noise of beatnote generated by the laser source is at maximum of -90 dBrad²/Hz with active stabilization, and the relative intensity noise (RIN) has been measured at -115 dB/Hz. It would potentially results in a clock frequency stability of 1.6 .10^-12 at 1 second, limited by the laser RIN. With proper adjustments in the laser and clock set-up, we target a stability of 3.10^-13 at 1 second
- …