67 research outputs found

    Charge collective modes in an incommensurately modulated cuprate

    Get PDF
    We report the first measurement of collective charge modes of insulating Sr14Cu24O41 using inelastic resonant x-ray scattering over the complete Brillouin zone. Our results show that the intense excitation modes at the charge gap edge predominantly originate from the ladder-containing planar substructures. The observed ladder modes (E vs. Q) are found to be dispersive for momentum transfers along the "legs" but nearly localized along the "rungs". Dispersion and peakwidth characteristics are similar to the charge spectrum of 1D Mott insulators, and we show that our results can be understood in the strong coupling limit (U >> t_{ladder}> t_{chain}). The observed behavior is in marked contrast to the charge spectrum seen in most two dimensional cuprates. Quite generally, our results also show that momentum-tunability of inelastic scattering can be used to resolve mode contributions in multi-component incommensurate systems.Comment: 4+ pages, 5 figure

    Sliding Density-Wave in Sr_{14}Cu_{24}O_{41} Ladder Compounds

    Full text link
    We used transport and Raman scattering measurements to identify the insulating state of self-doped spin 1/2 two-leg ladders of Sr_{14}Cu_{24}O_{41} as a weakly pinned, sliding density wave with non-linear conductivity and a giant dielectric response that persists to remarkably high temperatures

    Superconductivity in La(1.56)Sr(0.44)CuO(4)/La(2)CuO(4) superlattices

    Get PDF
    Superlattices of the repeated structure La(1.56)Sr(0.44)CuO(4)/La(2)CuO(4) (LSCO-LCO), where none of the constituents is superconducting, show a superconducting transition of T_c \simeq 25 K. In order to elucidate the nature of the superconducting state we have performed a low-energy muSR study. By applying a magnetic field parallel (Meissner state) and perpendicular (vortex state) to the film planes, we could show that superconductivity is sheet like, resulting in a very anisotropic superconducting state. This result is consistent with a simple charge-transfer model, which takes into account the layered structure and the difference in the chemical potential between LCO and LSCO, as well as Sr interdiffusion. Using a pancake-vortex model we could estimate a strict upper limit of the London penetration depth to 380 nm in these superlattices. The temperature dependence of the muon depolarization rate in field cooling experiments is very similar to what is observed in intercalated BSCCO and suggests that vortex-vortex interaction is dominated by electromagnetic coupling but negligible Josephson interaction.Comment: 4 pages, 3 figure

    Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain

    Full text link
    Recently a metallic state was discovered at the interface between insulating oxides, most notably LaAlO3 and SrTiO3. Properties of this two-dimensional electron gas (2DEG) have attracted significant interest due to its potential applications in nanoelectronics. Control over this carrier density and mobility of the 2DEG is essential for applications of these novel systems, and may be achieved by epitaxial strain. However, despite the rich nature of strain effects on oxide materials properties, such as ferroelectricity, magnetism, and superconductivity, the relationship between the strain and electrical properties of the 2DEG at the LaAlO3/SrTiO3 heterointerface remains largely unexplored. Here, we use different lattice constant single crystal substrates to produce LaAlO3/SrTiO3 interfaces with controlled levels of biaxial epitaxial strain. We have found that tensile strained SrTiO3 destroys the conducting 2DEG, while compressively strained SrTiO3 retains the 2DEG, but with a carrier concentration reduced in comparison to the unstrained LaAlO3/SrTiO3 interface. We have also found that the critical LaAlO3 overlayer thickness for 2DEG formation increases with SrTiO3 compressive strain. Our first-principles calculations suggest that a strain-induced electric polarization in the SrTiO3 layer is responsible for this behavior. It is directed away from the interface and hence creates a negative polarization charge opposing that of the polar LaAlO3 layer. This both increases the critical thickness of the LaAlO3 layer, and reduces carrier concentration above the critical thickness, in agreement with our experimental results. Our findings suggest that epitaxial strain can be used to tailor 2DEGs properties of the LaAlO3/SrTiO3 heterointerface

    Charge-Density-Wave Formation in the Doped Two-Leg Extended Hubbard Ladder

    Full text link
    We investigate electronic properties of the doped two-leg Hubbard ladder with both the onsite and the nearest-neighbor Coulomb repulsions, by using the the weak-coupling renormalization-group method. It is shown that, for strong nearest-neighbor repulsions, the charge-density-wave state coexisting with the p-density-wave state becomes dominant fluctuation where spins form intrachain singlets. By increasing doping rate, we have also shown that the effects of the nearest-neighbor repulsions are reduced and the system exhibits a quantum phase transition into the d-wave-like (or rung-singlet) superconducting state. We derive the effective fermion theory which describes the critical properties of the transition point with the gapless excitation of magnon. The phase diagram of the two-leg ladder compound, Sr_{14-x}Ca_xCu_{24}O_{41}, is discussed.Comment: 4 pages, 2 figure

    Magnetism in the 2D Limit and Interface Superconductivity in Metal-Insulator La(2-x)Sr(x)CuO(4) Superlattices

    Full text link
    We show, by means of low-energy muon spin rotation measurements, that few-unit-cells thick La(2)CuO(4) layers synthesized digitally by molecular beam epitaxy synthesis are antiferromagnetically ordered. Below a thickness of about 5 CuO(2) layers the long-range ordered state breaks down, and a magnetic state appears with enhanced quantum fluctuations and a reduced spin stiffness. This magnetic state can exist in close proximity (few Angstrom) to high-temperature superconducting layers, without transmitting supercurrents.Comment: 4 pages, 3 figure

    Differences Between Hole and Electron Doping of a Two-Leg CuO Ladder

    Full text link
    Here we report results of a density-matrix-renormalization-group (DMRG) calculation of the charge, spin, and pairing properties of a two-leg CuO Hubbard ladder. The outer oxygen atoms as well as the rung and leg oxygen atoms are included along with near-neighbor and oxygen-hopping matrix elements. This system allows us to study the effects of hole and electron doping on a system which is a charge transfer insulator at a filling of one hole per Cu and exhibits power law, d-wave-like pairing correlations when doped. In particular, we focus on the differences between doping with holes or electrons.Comment: REVTEX 4, 10 pages, 13 figure

    Field dependence of the magnetic spectrum in anisotropic and Dzyaloshinskii-Moriya antiferromagnets: II. Raman spectroscopy

    Full text link
    We compare the theoretical predictions of the previous article [L. Benfatto and M. B. Silva Neto, cond-mat/0602419], with Raman spectroscopy experiments in Sr(2)CuO(2)Cl(2) and untwinned La(2)CuO(4) single crystals. We construct the magnetic point group for the magnetically ordered phase of the two compounds, Sr(2)CuO(2)Cl(2) and La(2)CuO(4), and we classify all the Raman active one-magnon excitations according to the irreducible co-representations for the associated magnetic point group. We then measure the evolution of the one-magnon Raman energies and intensities for low and moderate magnetic fields along the three crystallographic directions. In the case of La(2)CuO(4), we demonstrate that from the jump of the Dzyaloshinskii-Moriya gap at the critical magnetic field H_c ~ 6.6 T for the weak-ferromagnetic transition one can determine the value of the interlayer coupling J_\perp/J ~ 3.2 x 10^-5. We furthermore determine the components of the anisotropic gyromagnetic tensor as g_s^a=2.0, g_s^b=2.08, and the upper bound g_s^c=2.65. For the case of Sr(2)CuO(2)Cl(2), we compare the Raman data obtained in an in-plane magnetic field with previous magnon-gap measurements done by ESR. Using the very low magnon gap estimated by ESR (~ 0.05 meV), the data for the one-magnon Raman energies agree reasonably well with the theoretical predictions for the case of a transverse field (only hardening of the gap).Comment: 18 pages, 14 figures, final version. Part I can be found at cond-mat/060241

    Nonmonotonic d_{x^2-y^2} Superconducting Order Parameter in Nd_{2-x}Ce_xCuO_4

    Full text link
    Low energy polarized electronic Raman scattering of the electron doped superconductor Nd_1.85Ce_0.15CuO_4 (T_c=22 K) has revealed a nonmonotonic d_{x^2-y^2} superconducting order parameter. It has a maximum gap of 4.4 k_BT_c at Fermi surface intersections with antiferromagnetic Brillouin zone (the ``hot spots'') and a smaller gap of 3.3 k_BT_c at fermionic Brillouin zone boundaries. The gap enhancement in the vicinity of the ``hot spots'' emphasizes role of antiferromagnetic fluctuations and similarity in the origin of superconductivity for electron- and hole-doped cuprates.Comment: 4 pages, 4 figure
    corecore