872 research outputs found
Cell bystander effect induced by radiofrequency electromagnetic fields and magnetic nanoparticles
Induced effects by direct exposure to ionizing radiation (IR) are a central
issue in many fields like radiation protection, clinic diagnosis and
oncological therapies. Direct irradiation at certain doses induce cell death,
but similar effects can also occur in cells no directly exposed to IR, a
mechanism known as bystander effect. Non-IR (radiofrequency waves) can induce
the death of cells loaded with MNPs in a focused oncological therapy known as
magnetic hyperthermia. Indirect mechanisms are also able to induce the death of
unloaded MNPs cells. Using in vitro cell models, we found that colocalization
of the MNPs at the lysosomes and the non-increase of the temperature induces
bystander effect under non-IR. Our results provide a landscape in which
bystander effects are a more general mechanism, up to now only observed and
clinically used in the field of radiotherapy.Comment: 16 pages, 4 figures, submitted to International Journal of Radiation
Biolog
Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake
Nanoparticles (NPs) engineered for biomedical applications are meant to be in
contact with protein-rich physiological fluids. These proteins are usually
adsorbed onto the NP surface, forming a swaddling layer called protein corona
that influences cell internalization. We present a study on protein adsorption
onto different magnetic NPs (MNPs) when immersed in cell culture medium, and
how these changes affect the cellular uptake. Two colloids with magnetite cores
of 25 nm, same hydrodynamic size and opposite surface charge were in situ
coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative
poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture
medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size
increase. After 24 h of incubation large MNP-protein aggregates with
hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were
observed. Each cluster contained an estimated number of magnetic cores between
450 and 1000, indicating the formation of large aggregates with a "plum
pudding" structure of MNPs embedded into a protein network of negative surface
charge irrespective of the MNP_core charge. We demonstrated that PEI-MNPs are
incorporated in much larger amounts than the PAA-MNPs units. Quantitative
analysis showed that SH-SY5Y cells can incorporate 100 per cent of the added
PEI-MNPs up to about 100 pg per cell, whereas for PAA-MNPs the uptake was less
than 50 percent. The final cellular distribution showed also notable
differences regarding partial attachment to the cell membrane. These results
highlight the need to characterize the final properties of MNPs after protein
adsorption in biological media, and demonstrate the impact of these properties
on the internalization mechanisms in neural cells.Comment: 32 pages, 10 figure
Magnetic Nanoparticles for Power Absorption: optimizing size, shape and magnetic properties
We present a study on the magnetic properties of naked and silica-coated
Fe3O4 nanoparticles with sizes between 5 and 110 nm. Their efficiency as
heating agents was assessed through specific power absorption (SPA)
measurements as a function of particle size and shape. The results show a
strong dependence of the SPA with the particle size, with a maximum around 30
nm, as expected for a Neel relaxation mechanism in single-domain particles. The
SiO2 shell thickness was found to play an important role in the SPA mechanism
by hindering the heat outflow, thus decreasing the heating efficiency. It is
concluded that a compromise between good heating efficiency and surface
functionality for biomedical purposes can be attained by making the SiO2
functional coating as thin as possible.Comment: 15 pages, 7 figures, 2 table
- …