1,365 research outputs found
Mechanisms of motor learning: by humans, for robots
Whenever we perform a movement and interact with objects in our environment, our central
nervous system (CNS) adapts and controls the redundant system of muscles actuating
our limbs to produce suitable forces and impedance for the interaction. As modern robots
are increasingly used to interact with objects, humans and other robots, they too require
to continuously adapt the interaction forces and impedance to the situation. This thesis
investigated the motor mechanisms in humans through a series of technical developments
and experiments, and utilized the result to implement biomimetic motor behaviours on
a robot. Original tools were first developed, which enabled two novel motor imaging
experiments using functional magnetic resonance imaging (fMRI). The first experiment
investigated the neural correlates of force and impedance control to understand the control
structure employed by the human brain. The second experiment developed a regressor free
technique to detect dynamic changes in brain activations during learning, and applied
this technique to investigate changes in neural activity during adaptation to force fields
and visuomotor rotations. In parallel, a psychophysical experiment investigated motor
optimization in humans in a task characterized by multiple error-effort optima. Finally
a computational model derived from some of these results was implemented to exhibit
human like control and adaptation of force, impedance and movement trajectory in a
robot
Optimum Size of Nanorods for Heating Application
Magnetic nanoparticles (MNP's) have become increasingly important in heating
applications such as hyperthermia treatment of cancer due to their ability to
release heat when a remote external alternating magnetic field is applied. It
has been shown that the heating capability of such particles varies
significantly with the size of particles used. In this paper, we theoretically
evaluate the heating capability of rod-shaped MNP's and identify conditions
under which these particles display highest efficiency. For optimally sized
monodisperse particles, the power generated by rod-shaped particles is found to
be equal to that generated by spherical particles. However, for particles which
have a dispersion in size, rod-shaped particles are found to be more effective
in heating as a result of the greater spread in the power density distribution
curve. Additionally, for rod-shaped particles, a dispersion in the radius of
the particle contributes more to the reduction in loss power when compared to a
dispersion in the length. We further identify the optimum size, i.e the radius
and length of nanorods, given a bi-variate log-normal distribution of particle
size in two dimensions
Recommended from our members
Characterization of delamination in silicon/epoxy systems
textMicroelectronic devices are multilayered structures with many different interfaces. Their mechanical reliability is of utmost importance when considering the implementation of new materials. Linear elastic fracture mechanics (LEFM) is a common approach that has been used for interfacial fracture analyses in the microelectronics industry where the energy release rate parameter is considered to be the driving force for delamination and the failure criterion is established by comparing this with the interface toughness. However this approach has been unable to model crack-nucleation, which plays an important part in analyzing the mechanical reliability of chip-package systems. The cohesive interface modeling approach, which is considered here, has the capability to model crack nucleation and growth, provided interfacial parameters such as strength and toughness of the system are available. These parameters are obtained through the extraction of traction-separation relations, which can be obtained through indirect hybrid numerical/experimental methods or direct experimental methods. All methods of extracting traction-separation relations require some local feature of the crack-tip region to be measured. The focus in this doctoral work has been on the comparison of the two methods for a mode-I DCB experiment and on the development of a universal loading device to extract mixed-mode traction-separation relations at different mode-mix values. The techniques that have been adopted for the local measurements are infrared crack opening interferometry (IR-COI) and digital image correlation (DIC). Apart from the global measurements of load-displacement (P-[delta]), local crack-tip parameters were measured using IR-COI or DIC. The combination of global and local measurements gave the relations between the fracture driving force (energy release rate or J-integral, J) and crack opening displacements, which were used to obtain the local tractions. IR-COI is an extremely useful technique to image and measure local crack-tip parameters. However, as IR-COI is restricted to normal measurements, the loading device was configured to accommodate a DIC system in order to make both normal and tangential measurements. In addition to measurements, fracture surface characterization techniques such as atomic force microscopy (AFM), profilometry and X-ray photoelectron spectroscopy were used to observe the fracture mechanisms.Materials Science and Engineerin
Host and Bacterial Determinants of Staphylococcus aureus Nasal Colonization in Humans
Staphylococcus aureus (SA), an opportunistic pathogen colonizing the anterior nares in approximately 30% of the human population, causes severe hospital-associated and community-acquired infections. SA nasal carriage plays a critical role in the pathogenesis of staphylococcal infections and SA eradication from the nares has proven to be effective in reducing endogenous infections. To understand SA nasal colonization and its relation with consequent disease, assessment of nasal carriage dynamics among a diverse population and determining factors responsible for SA nasal carriage have become major imperatives. Here, we report on an extensive longitudinal monitoring of SA nasal carriage in 109 healthy individuals over a period of up to three years to assess nasal carriage dynamics. Phylogenetic analyses of SA housekeeping genes and hypervariable virulence genes revealed that not only were SA strains colonizing intermittent and persistent nasal carriers genetically similar, but no preferential colonization of specific SA strains in these carriers was observed over time. These results indicated that other non-SA factors could be involved in determining specific carriage states. Therefore, to elucidate host responses during SA nasal carriage, we performed human SA nasal recolonization in a subset of SA nasal carriers within our cohort. In these studies, SA colonization levels were determined, and nasal secretions were collected and analyzed for host immune factors responsible for SA nasal carriage. Interestingly, we observed that stimulation of host immune responses lead to clearance of SA while sustained SA colonization was observed in hosts that did not mount a response during carriage. Further, analysis of nasal secretions from hosts revealed that proinflammatory cytokines and chemokines were significantly induced during SA nasal clearance suggesting that innate immune effectors influence carriage. SA utilizes a repertoire of surface and secreted proteins to evade host immune response and successfully colonize the nose. Analysis of the most abundant immunoevasive proteins in the exoproteome of SA nasal carrier strains revealed that expression levels of Staphylococcal protein A (SPA) produced by SA nasal carrier strains in vitro corresponded to the level of persistence of SA in the human nose. To determine if SPA is involved in modulating the host\u27s response to SA colonization, a subset of participants in our cohort was nasally recolonized with equal concentrations of both wild-type (WT) and spa-disrupted (?spa) autologous strains of SA. Interestingly, ?spa strains were eliminated from the nares significantly faster than WT when the host mounted an immune response, suggesting that the immunoevasive role of SPA is a determinant of carriage persistence. Collectively, this report augments our understanding of SA nasal carriage dynamics, in addition to identifying important host and microbial determinants that influence SA nasal colonization in humans. Better understanding of this phenomenon can lead to improved preventative strategies to thwart carriage-associated SA infections
Integrated reliable and robust design
The objective of this research is to develop an integrated design methodology for reliability and robustness. Reliability-based design (RBD) and robust design (RD) are important to obtain optimal design characterized by low probability of failure and minimum performance variations respectively. But performing both RBD and RD in a product design may be conflicting and time consuming. An integrated design model is needed to achieve both reliability and robustness simultaneously. The purpose of this thesis is to integrate reliability and robustness. To achieve this objective, we first study the general relationship between reliability and robustness. Then we perform a numerical study on the relationship between reliability and robustness, by combining the reliability based design, robust design, multi objective optimization and Taguchi\u27s quality loss function to formulate an integrated design model. This integrated model gives reliable and robust optimum design values by minimizing the probability of failure and quality loss function of the design simultaneously. Based on the results from the numerical study, we propose a generalized quality loss function that considers both the safe region and the failure region. Taguchi\u27s quality loss function defines quality loss in the safe design region and risk function defines quality loss in the failure region. This integrated model achieves reliability and robustness by minimizing the general quality loss function of the design. Example problems show that this methodology is computationally efficient compared to the other optimization models. Results from the various examples suggest that this method can be efficiently used to minimize the probability of failure and the total quality loss of a design simultaneously --Abstract, page iii
Improvement of mechanical properties and water stability of vegetable protein based plastics
Bio-renewable bio-degradable plastics are a potential solution to the growing problems of pollution caused by petroleum plastics and dependency on foreign nations for petroleum resources. One possible feed stock for these materials are vegetable proteins, especially from soy bean and corn. These proteins have relatively high molecular weights and have the potential of being processed with standard polymer processing technologies. But some issues that need to be addressed are their water instability (soy protein) and inferior mechanical properties as compared to petroleum derived plastics. In this study, soy protein isolates (SPI) and zein protein was processed with various additives and different process variables to improve their mechanical and water absorption properties.;SPI a food grade protein isolate extracted (90% protein) from soybeans was mixed with solvents such as water and glycerol and preservative salts to form the base resin. The resin was extruded in its control composition as well as with additives such as zinc stearate, zinc sulfite and blended with poly-epsilon caprolactone (PCL) to obtain pellets of five different compositions. The extrudate was pelletized and injection molded into ASTM dog-bone samples, which were used for characterization. The results indicated that the blends with PCL were relatively water stable. Thermocycling of control composition at 100°C improved the tensile strength significantly.;Zein an alcohol soluble protein from corn endosperm was casted into films after dissolution in solvents (ethanol) and addition of additives and/or plasticizers. The control formulation based on screening experiments was varied with the addition of different percentages of nanoclay. The effect of nanoclay exfoliation by ultrasonics on zein cast sheets was investigated. The results indicated that the control formulation had better mechanical properties but addition of nanoclays improved the water absorption properties in the films
- …