814 research outputs found

    Beyond ethnicity: symbols of identity in fourth to sixth century AD England

    Get PDF

    Hippocampal subfield volumes in COVID-19: a preliminary multicenter study using 7T MRI

    Get PDF
    Background: Hippocampal formation atrophy is a well-established imaging biomarker of several neurological diseases, including Alzheimer\u27s disease, temporal lobe epilepsy, and schizophrenia. The hippocampus is divided into subfields that have different functions and vary in sensitivity to different diseases. This study investigates the potential interaction between COVID-19 and the various hippocampus subfields, which may shed light on the long-term neurological consequences of the virus. Method: We obtained high-resolution T1-weighted (T1w) and T2-weighted (T2w) MRI images using 7T scanners located at three sites in two countries: Pittsburgh (n=14) and Texas (San Antonio and Houston) (n=40) in the USA, and Nottingham, UK (n=33). We evaluated the hippocampus subfields using the ASHS package [1-3]. Imaging sets of 51 subjects with minimal or no manual segmentation corrections (Figures 1 and 2) were included in the analysis. We conducted T-tests with Bonferroni correction, adjusting for age and intracranial volume to identify the differences in hippocampus subfield volumes across groups. Result: Participants who needed admission into the ICU due to Covid-19 showed a significantly lower (p-value=0.0034) left CA1 volume compared to participants who did not require ICU (Figure 3). In addition, several other non-significant trends were observed. Conclusion: Our preliminary findings suggest that Covid-19 may impact the hippocampus, particularly in patients who required intensive care. However, the study - as of to date - has a small sample size and lacks a comparison group with patients who were admitted into ICU for acute illnesses other than Covid-19. Additionally, longitudinal data is needed to track the long-term effects of the disease on the hippocampal subfields

    Activation induced changes in GABA: functional MRS at 7 T with MEGA-sLASER

    Get PDF
    Functional magnetic resonance spectroscopy (fMRS) has been used to assess the dynamic metabolic responses of the brain to a physiological stimulus non-invasively. However, only limited information on the dynamic functional response of Îł-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain, is available. We aimed to measure the activation-induced changes in GABA unambiguously using a spectral editing method, instead of the conventional direct detection techniques used in previous fMRS studies. The Mescher-Garwood-semi-localised by adiabatic selective refocusing (MEGA-sLASER) sequence was developed at 7 T to obtain the time course of GABA concentration without macromolecular contamination. A significant decrease (−12±5%) in the GABA to total creatine ratio (GABA/tCr) was observed in the motor cortex during a period of 10 minutes of hand-clenching, compared to an initial baseline level (GABA/tCr = 0.11±0.02) at rest. An increase in the Glx (glutamate and glutamine) to tCr ratio was also found, which is in agreement with previous findings. In contrast, no significant changes in NAA/tCr and tCr were detected. With consistent and highly efficient editing performance for GABA detection and the advantage of visually identifying GABA resonances in the spectra, MEGA-sLASER is demonstrated to be an effective method for studying of dynamic changes in GABA at 7 T

    Lower locus coeruleus integrity in older COVID-19 survivors: initial findings from an international 7T MRI consortium

    Get PDF
    Background: The SARS-CoV-2 coronavirus has been associated with structural brain changes, consistent with its neurological manifestations. Recent studies showed a specific predilection for brainstem glial activation and hypometabolism, possibly indicating involvement of the locus coeruleus. The locus coeruleus (LC) modulates many cognitive functions and behaviors and its norepinephrine projections regulate both immune responses and vascular reactivity. We aimed to examine differences in LC integrity between COVID-19 survivors and controls. Method: Participants are enrolled across 3 US and 1 UK sites using harmonized cognitive and 7T MR-imaging protocols. Here, we analyzed data from 18 participants enrolled at Houston Methodist (12 COVID-19 survivors, 6 controls; Figure 1). COVID-19 survivors were required to have had a positive antigen test and an illness syndrome consistent with COVID-19. Healthy controls were required to have no significant pre-existing medical, neurologic, or psychiatric illness and no illness requiring hospitalization in the last 2 years. LC imaging was performed using a dedicated 7T MT-TFL sequence (0.4 x 0.4 x0.5mm). A site-specific normalized template was constructed using ANTs/FSL. The entire average LC integrity as well as voxel-wise integrity values were compared between COVID-19 survivors and controls using a robust linear regression (age-controlled and threshold free cluster enhancement corrected). LC integrity was correlated with age, sex, ethnicity and cognition using Spearman’s rank correlation. Result: Average LC integrity was not correlated with age, sex, or Hispanic ethnicity (p\u3e0.3). COVID-19 survivors did not differ from Controls when examining the entire LC (p=0.54). Voxel-wise analyses revealed a small cluster (19 voxels) in the middle portion of the left LC where COVID-19 survivors exhibited lower LC integrity than controls (p=0.005; Figure 2). Integrity of this cluster was not related to age or Hispanic ethnicity (p=0.9). LC integrity did not correlate with cognitive performance within the COVID-19 survivors (Trail Making Test B: p=0.43; Craft Story delayed recall p=0.47; MoCA p=0.84). Conclusion: Consistent with previous animal and human studies, our initial findings provide evidence for neuroinvasive potential of SARS-CoV-2 localized in the middle LC. In the future, we aim to expand our sample and link these observations to the neurocognitive sequelae of COVID-19

    Predicting the future of ALS: the impact of demographic change and potential new treatments on the prevalence of ALS in the United Kingdom, 2020-2116

    Get PDF
    OBJECTIVE To model the effects of demographic change under various scenarios of possible future treatment developments in ALS. METHODS Patients diagnosed with ALS at the King's College Hospital Motor Nerve Clinic between 2004 and 2017, and living within the London boroughs of Lambeth, Southwark, and Lewisham (LSL), were included as incident cases. We also ascertained incident cases from the Canterbury region over the same period. Future incidence of ALS was estimated by applying the calculated age- and sex-specific incidence rates to the UK population projections from 2020 to 2116. The number of prevalent cases for each future year was estimated based on an established method. Assuming constant incidence, we modelled four possible future prevalence scenarios by altering the median disease duration for varying subsets of the population, to represent the impact of new treatments. RESULTS The total number of people newly diagnosed with ALS per year in the UK is projected to rise from a baseline of 1415 UK cases in 2010 to 1701 in 2020 and 2635 in 2116. Overall prevalence of ALS was predicted to increase from 8.58 per 100,000 persons in 2020 to 9.67 per 100,000 persons in 2116. Halting disease progression in patients with C9orf72 mutations would yield the greatest impact of the modelled treatment scenarios, increasing prevalence in the year 2066 from a baseline of 9.50 per 100,000 persons to 15.68 per 100,000 persons. CONCLUSIONS Future developments in treatment would combine with the effects of demographic change to result in more people living longer with ALS

    Delayed gastric emptying and reduced postprandial small bowel water content of equicaloric whole meal bread versus rice meals in healthy subjects: novel MRI insights

    Get PDF
    BACKGROUND/OBJECTIVES: Postprandial bloating is a common symptom in patients with functional gastrointestinal (GI) diseases. Whole meal bread (WMB) often aggravates such symptoms though the mechanisms are unclear. We used magnetic resonance imaging (MRI) to monitor the intragastric fate of a WMB meal (11% bran) compared to a rice pudding (RP) meal. SUBJECTS/METHODS: 12 healthy volunteers completed this randomised crossover study. They fasted overnight and after an initial MRI scan consumed a glass of orange juice with a 2267 kJ WMB or an equicaloric RP meal. Subjects underwent serial MRI scans every 45 min up to 270 min to assess gastric volumes and small bowel water content and completed a GI symptom questionnaire. RESULTS: The MRI intragastric appearance of the two meals was markedly different. The WMB meal formed a homogeneous dark bolus with brighter liquid signal surrounding it. The RP meal separated into an upper, liquid layer and a lower particulate layer allowing more rapid emptying of the liquid compared to solid phase (sieving). The WMB meal had longer gastric half emptying times (132±8 min) compared to the RP meal (104±7 min), P<0.008. The WMB meal was associated with markedly reduced MRI-visible small bowel free mobile water content compared to the RP meal, P<0.0001. CONCLUSIONS: WMB bread forms a homogeneous bolus in the stomach which inhibits gastric sieving and hence empties slower than the equicaloric rice meal. These properties may explain why wheat causes postprandial bloating and could be exploited to design foods which prolong satiation
    • 

    corecore