12 research outputs found
Filamentation Involves Two Overlapping, but Distinct, Programs of Filamentation in the Pathogenic Fungus Candida albicans
The ability of the human pathogenic fungus Candida albicans to switch between yeast-like and filamentous forms of growth has long been linked to pathogenesis. Numerous environmental conditions, including growth at high temperatures, nutrient limitation, and exposure to serum, can trigger this morphological switch and are frequently used in in vitro models to identify genes with roles in filamentation. Previous work has suggested that differences exist between the various in vitro models both in the genetic requirements for filamentation and transcriptional responses to distinct filamentation-inducing media, but these differences had not been analyzed in detail. We compared 10 in vitro models for filamentation and found broad genetic and transcriptomic differences between model systems. The comparative analysis enabled the discovery of novel media-independent genetic requirements for filamentation as well as a core filamentation transcriptional profile. Our data also suggest that the physical environment drives distinct programs of filamentation in C. albicans, which has significant implications for filamentation in vivo
Effect of Combined Methamphetamine and Oxycodone Use on the Synaptic Proteome in an In Vitro Model of Polysubstance Use
Polysubstance use (PSU) generally involves the simultaneous use of an opioid along with a stimulant. In recent years, this problem has escalated into a nationwide epidemic. Understanding the mechanisms and effects underlying the interaction between these drugs is essential for the development of treatments for those suffering from addiction. Currently, the effect of PSU on synapses-critical points of contact between neurons-remains poorly understood. Using an in vitro model of primary neurons, we examined the combined effects of the psychostimulant methamphetamine (METH) and the prescription opioid oxycodone (oxy) on the synaptic proteome using quantitative mass-spectrometry-based proteomics. A further ClueGO analysis and Ingenuity Pathway Analysis (IPA) indicated the dysregulation of several molecular functions, biological processes, and pathways associated with neural plasticity and structural development. We identified one key synaptic protein, Striatin-1, which plays a vital role in many of these processes and functions, to be downregulated following METH+oxy treatment. This downregulation of Striatin-1 was further validated by Western blot. Overall, the present study indicates several damaging effects of the combined use of METH and oxy on neural function and warrants further detailed investigation into mechanisms contributing to synaptic dysfunction
STING suppresses mitochondrial VDAC2 to govern RCC growth independent of innate immunity
STING is an innate immune sensor for immune surveillance of viral/bacterial infection and maintenance of an immune-friendly microenvironment to prevent tumorigenesis. However, if and how STING exerts innate immunity-independent function remains elusive. Here, the authors report that STING expression is increased in renal cell carcinoma (RCC) patients and governs tumor growth through non-canonical innate immune signaling involving mitochondrial ROS maintenance and calcium homeostasis. Mitochondrial voltage-dependent anion channel VDAC2 is identified as a new STING binding partner. STING depletion potentiates VDAC2/GRP75-mediated MERC (mitochondria-ER contact) formation to increase mitochondrial ROS/calcium levels, impairs mitochondria function, and suppresses mTORC1/S6K signaling leading to RCC growth retardation. STING interaction with VDAC2 occurs through STING-C88/C91 palmitoylation and inhibiting STING palmitoyl-transferases ZDHHCs by 2-BP significantly impedes RCC cell growth alone or in combination with sorafenib. Together, these studies reveal an innate immunity-independent function of STING in regulating mitochondrial function and growth in RCC, providing a rationale to target the STING/VDAC2 interaction in treating RCC
The Role of Pre- and Perinatal Oxycodone Exposure on Postnatal Brain Development and Behavior: Assessing the Impact on Later Life Brain Injuries in Juvenile Rats
There has been a long history of research investigating the role of the gestational environment on later life health and disease. The progressive widespread illicit and prescribed use of opioids in the 21st century has seen opioids become one of the most significant gestational insults in the last century. The ability of opioids to pass both the placental barrier and blood-brain barrier makes them a particularly dangerous teratogen capable of altering the peripheral physiology, neurobiology, and behavior of affected children. The works herein investigate the impact of a widely prescribed opioid, oxycodone, on developmental neurobiology in the context of response to a later traumatic brain injury using a rat model of in utero opioid exposure.
Maternal opioid use poses a significant health concern not just to the expectant mother but also to the fetus. While epidemiological research has shown the heightened risk factors associated with in utero opioid exposure, little research has investigated what molecular mechanisms underly the vulnerabilities these children carry throughout development and into later life. To understand the implications of in utero opioid exposure on the developing brain, we sought to assess the response to one of the most common pediatric injuries: minor traumatic brain injury (mTBI). Using a rat model of in utero oxycodone (IUO) exposure and a low force weight drop model of mTBI, we show not only that neonatal opioid exposure significantly affects neuroinflammation, brain metabolites, synaptic proteome, mitochondrial function, and altered behavior in juvenile rats, but also, in conjunction with mTBI these aberrations are further exacerbated. Specifically, we observed long term metabolic dysregulation, neuroinflammation, alterations in synaptic mitochondria, and impaired behavior were impacted severely by mTBI. Our research highlights the specific vulnerability caused by IUO exposure to a secondary stressor such as later life brain injury. In summary, we present a broad study to highlight the damaging effects of in utero opioid exposure in conjunction with mild brain injury on the developing brain
Filamentation Involves Two Overlapping, but Distinct, Programs of Filamentation in the Pathogenic Fungus Candida albicans
The ability of the human pathogenic fungus Candida albicans to switch between yeast-like and filamentous forms of growth has long been linked to pathogenesis. Numerous environmental conditions, including growth at high temperatures, nutrient limitation, and exposure to serum, can trigger this morphological switch and are frequently used in in vitro models to identify genes with roles in filamentation. Previous work has suggested that differences exist between the various in vitro models both in the genetic requirements for filamentation and transcriptional responses to distinct filamentation-inducing media, but these differences had not been analyzed in detail. We compared 10 in vitro models for filamentation and found broad genetic and transcriptomic differences between model systems. The comparative analysis enabled the discovery of novel media-independent genetic requirements for filamentation as well as a core filamentation transcriptional profile. Our data also suggest that the physical environment drives distinct programs of filamentation in C. albicans, which has significant implications for filamentation in vivo
Effect of Combined Methamphetamine and Oxycodone Use on the Synaptic Proteome in an In Vitro Model of Polysubstance Use
Polysubstance use (PSU) generally involves the simultaneous use of an opioid along with a stimulant. In recent years, this problem has escalated into a nationwide epidemic. Understanding the mechanisms and effects underlying the interaction between these drugs is essential for the development of treatments for those suffering from addiction. Currently, the effect of PSU on synapses—critical points of contact between neurons—remains poorly understood. Using an in vitro model of primary neurons, we examined the combined effects of the psychostimulant methamphetamine (METH) and the prescription opioid oxycodone (oxy) on the synaptic proteome using quantitative mass-spectrometry-based proteomics. A further ClueGO analysis and Ingenuity Pathway Analysis (IPA) indicated the dysregulation of several molecular functions, biological processes, and pathways associated with neural plasticity and structural development. We identified one key synaptic protein, Striatin-1, which plays a vital role in many of these processes and functions, to be downregulated following METH+oxy treatment. This downregulation of Striatin-1 was further validated by Western blot. Overall, the present study indicates several damaging effects of the combined use of METH and oxy on neural function and warrants further detailed investigation into mechanisms contributing to synaptic dysfunction