9 research outputs found

    Heterogeneous Trimetallic Nanoparticles as Catalysts

    Get PDF
    The development and application of trimetallic nanoparticles continues to accelerate rapidly as a result of advances in materials design, synthetic control, and reaction characterization. Following the technological successes of multicomponent materials in automotive exhausts and photovoltaics, synergistic effects are now accessible through the careful preparation of multielement particles, presenting exciting opportunities in the field of catalysis. In this review, we explore the methods currently used in the design, synthesis, analysis, and application of trimetallic nanoparticles across both the experimental and computational realms and provide a critical perspective on the emergent field of trimetallic nanocatalysts. Trimetallic nanoparticles are typically supported on high-surface-area metal oxides for catalytic applications, synthesized via preparative conditions that are comparable to those applied for mono- and bimetallic nanoparticles. However, controlled elemental segregation and subsequent characterization remain challenging because of the heterogeneous nature of the systems. The multielement composition exhibits beneficial synergy for important oxidation, dehydrogenation, and hydrogenation reactions; in some cases, this is realized through higher selectivity, while activity improvements are also observed. However, challenges related to identifying and harnessing influential characteristics for maximum productivity remain. Computation provides support for the experimental endeavors, for example in electrocatalysis, and a clear need is identified for the marriage of simulation, with respect to both combinatorial element screening and optimal reaction design, to experiment in order to maximize productivity from this nascent field. Clear challenges remain with respect to identifying, making, and applying trimetallic catalysts efficiently, but the foundations are now visible, and the outlook is strong for this exciting chemical field

    Probing composition distributions in nanoalloy catalysts with correlative electron microscopy

    Get PDF
    Alloyed nanoparticles are important functional materials and have wide applications especially in heterogeneous catalysis and electrocatalysis. Controlled synthesis of nanoalloys is desirable in order to understand their structure–property relationships and further optimize their performance. While many synthesis methods have been developed, information on the resultant composition distributions among particles is often not available, and uniformity of composition from particle-to-particle is often incorrectly assumed. Such an analysis would require extensive work on a high-resolution analytical electron microscope, which has some drawbacks and the high-resolution equipment is not always readily accessible. We hereby introduce an alternative way for composition analysis of nanoalloys via a correlative electron microscopy approach, separating the size measurement (imaging) and composition analysis between TEM and SEM instruments. Using a case study of two AuPd nanoalloys which have very similar size distributions but significantly different composition distributions and catalytic activities, we demonstrate both the necessity of performing composition distribution analysis on ultrasmall nanoalloys and the feasibility of this method. We show that a more efficient X-ray analysis on nanoalloys can be done in an SEM due to intrinsically higher ionization cross-sections from the relatively lower energy (e.g. 20 keV) electron beam and the possibility of using large probe currents and X-ray detectors with large collection angles

    Heterogeneous trimetallic nanoparticles as catalysts

    Get PDF
    The development and application of trimetallic nanoparticles continues to accelerate rapidly as a result of advances in materials design, synthetic control, and reaction characterization. Following the technological successes of multicomponent materials in automotive exhausts and photovoltaics, synergistic effects are now accessible through the careful preparation of multielement particles, presenting exciting opportunities in the field of catalysis. In this review, we explore the methods currently used in the design, synthesis, analysis, and application of trimetallic nanoparticles across both the experimental and computational realms and provide a critical perspective on the emergent field of trimetallic nanocatalysts. Trimetallic nanoparticles are typically supported on high-surface-area metal oxides for catalytic applications, synthesized via preparative conditions that are comparable to those applied for mono- and bimetallic nanoparticles. However, controlled elemental segregation and subsequent characterization remain challenging because of the heterogeneous nature of the systems. The multielement composition exhibits beneficial synergy for important oxidation, dehydrogenation, and hydrogenation reactions; in some cases, this is realized through higher selectivity, while activity improvements are also observed. However, challenges related to identifying and harnessing influential characteristics for maximum productivity remain. Computation provides support for the experimental endeavors, for example in electrocatalysis, and a clear need is identified for the marriage of simulation, with respect to both combinatorial element screening and optimal reaction design, to experiment in order to maximize productivity from this nascent field. Clear challenges remain with respect to identifying, making, and applying trimetallic catalysts efficiently, but the foundations are now visible, and the outlook is strong for this exciting chemical field

    Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.

    Get PDF
    A number of Pd based materials have been synthesised and evaluated as catalysts for the conversion of carbon dioxide and hydrogen to methanol, a useful platform chemical and hydrogen storage molecule. Monometallic Pd catalysts shows poor methanol selectivity, but this is improved through the formation of Pd alloys, with both PdZn and PdGa alloys showing greatly enhanced methanol productivity compared with monometallic Pd/Al2O3 and Pd/TiO2 catalysts. Catalyst characterisation shows that the 1:1 β-PdZn alloy is present in all Zn containing post-reaction samples, including PdZn/Ga2O3, while the Pd2Ga alloy formed for the Pd/Ga2O3 sample. The heats of mixing were calculated for a variety of alloy compositions with high heats of mixing calculated for both PdZn and Pd2Ga alloys, with values of ca. -0.6 eV/atom and ca. -0.8 eV/atom, respectively. However, ZnO is more readily reduced than Ga2O3, providing a possible explanation for the preferential formation of the PdZn alloy, rather than PdGa. when in the presence of Ga2O3

    CO2 hydrogenation to methanol on intermetallic PdGa and PdIn catalysts and the effect of Zn co-deposition

    Get PDF
    The behaviour of Pd deposited on Ga2O3 and In2O3 by CVI is compared for the hydrogenation of CO2 to methanol. Ga2O3 alone is inactive, but In2O3 has good conversion, and selectivity as high as 89 % to CH3OH. The addition of Pd to the catalysts had relatively little effect for In2O3, but in contrast, the addition of Pd to Ga2O3, has a very big effect, inducing high activity and selectivity to methanol. Both oxides form Pd intermetallics - Pd2In3 and Pd2Ga. However, for the In catalysts there is also a thick (∼3 nm) overlayer of the oxide, while for the Ga catalyst there was no such overlayer. Hence this is why addition of Pd to the Indium catalysts has relatively little effect on performance compared with Ga. Furthermore, the effect of Pd and Zn co-deposition on Ga₂O₃ and In₂O₃ was investigated, as well as the effect of the support morphology. Upon co-deposition of Pd and Zn, and after reduction, the Pd2In3 catalyst remains phase stable, whereas the Pd2Ga alloy is replaced by PdZn, and is improved in methanol yield

    The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol

    Get PDF
    The rise in atmospheric CO2 concentration and the concomitant rise in global surface temperature have prompted massive research effort in designing catalytic routes to utilize CO2 as a feedstock. Prime among these is the hydrogenation of CO2 to make methanol, which is a key commodity chemical intermediate, a hydrogen storage molecule, and a possible future fuel for transport sectors that cannot be electrified. Pd/ZnO has been identified as an effective candidate as a catalyst for this reaction, yet there has been no attempt to gain a fundamental understanding of how this catalyst works and more importantly to establish specific design criteria for CO2 hydrogenation catalysts. Here, we show that Pd/ZnO catalysts have the same metal particle composition, irrespective of the different synthesis procedures and types of ZnO used here. We demonstrate that all of these Pd/ZnO catalysts exhibit the same activity trend. In all cases, the β-PdZn 1:1 alloy is produced and dictates the catalysis. This conclusion is further supported by the relationship between conversion and selectivity and their small variation with ZnO surface area in the range 6–80 m2g–1. Without alloying with Zn, Pd is a reverse water-gas shift catalyst and when supported on alumina and silica is much less active for CO2 conversion to methanol than on ZnO. Our approach is applicable to the discovery and design of improved catalysts for CO2 hydrogenation and will aid future catalyst discovery

    New trimetallic nanoparticles as catalysts for the conversion of carbon dioxide to renewable fuels

    No full text
    In this thesis, the conversion of CO2 to methanol is examined using novel trimetallic catalysts. Initial studies focused on the use of Pd/ZnO catalysts. Different types of zinc oxide were synthesised by precipitation which exhibited a wide range of surface areas and morphologies. In addition to changing the ZnO catalyst support, palladium weight loading and catalyst synthesis techniques were also varied. Despite the significance of these changes, in general, this resulted in very little impact on catalyst performance. The reasons for this were explored, and the formation of the PdZn alloy was identified as the critical factor in producing effective Pd/ZnO catalysts for CO2 hydrogenation to methanol. The addition of copper to Pd/ZnO was investigated with the aim of improving the catalyst activity. Different Cu loadings were investigated. The CuPd/ZnO catalysts were found to have higher CO2 conversion compared to Pd/ZnO, although this corresponded to a decline in methanol selectivity. The most productive catalysts were those which were doped with very low levels of Cu (~0.75 wt.%). The addition of Au was then employed to improve the methanol selectivity, which represented a further improvement in the catalytic performance of these systems. Characterisation of the CuPd/ZnO and AuCuPd/ZnO catalysts was challenging due to their high degrees of freedom and lack of available reference data. A variety of complementary techniques were used to identify novel trimetallic alloys in these catalysts, although further experiments, in particular in-situ methodologies, will be necessary in the future to confirm these observations

    Probing composition distributions in nanoalloycatalysts with correlative electron microscopy

    No full text
    10.1039/d0ta00334dJournal of Materials Chemistry A10884

    Regeneration of copper catalysts mediated by molybdenum-based oxides

    No full text
    Cu catalysts, known for their unparalleled catalytic capabilities due to their unique electronic structure, have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions. Here, we demonstrate a molybdenum-mediated redispersion behavior of Cu under high-temperature oxidation conditions. The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO3 support upon heating to 600 °C, which facilitates the subsequent regeneration in a reducing atmosphere. A similar redispersion phenomenon is observed for Cu nanoparticles supported on ZnO-modified MoO3. The modification of ZnO significantly improves the performance of the Cu catalyst for CO2 hydrogenation to methanol, with the high activity being well maintained after four repeated oxidation-reduction cycles. In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu. This method is applicable to various Mo-based oxide supports, offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications
    corecore