247 research outputs found
Confinement and electron correlation effects in photoionization of atoms in endohedral anions: Ne@C60^{z-}
Trends in resonances, termed confinement resonances, in photoionization of
atoms A in endohedral fullerene anions A@C60^{z-} are theoretically studied and
exemplified by the photoionization of Ne in Ne@C{60}^{z-}. Remarkably, above a
particular nl ionization threshold of Ne in neutral Ne@C60 (I_{nl}^{z=0}),
confinement resonances in corresponding partial photoionization cross sections
sigma_{nl} of Ne in any charged Ne@C60^{z-} remain almost intact by a charge z
on the carbon cage, as a general phenomenon. At lower photon energies, omega <
I_{nl}^{z=0}, the corresponding photoionization cross sections develop
additional, strong, z-dependent resonances, termed Coulomb confinement
resonances, as a general occurrence. Furthermore, near the innermost 1s
ionization threshold, the 2p photoionization cross section sigma_{2p} of the
outermost 2p subshell of thus confined Ne is found to inherit the confinement
resonance structure of the 1s photoionization spectrum, via interchannel
coupling. As a result, new confinement resonances emerge in the 2p
photoionization cross section of the confined Ne atom at photoelectron energies
which exceed the 2p threshold by about a thousand eV, i.e., far above where
conventional wisdom said they would exist. Thus, the general possibility for
confinement resonances to resurrect in photoionization spectra of encapsulated
atoms far above thresholds is revealed, as an interesting novel general
phenomenon.Comment: 6 pages, 4 figures, Latex2e, jpconf.cls styl
Deformation effects in Ni nuclei produced in Si+Si at 112 MeV
Velocity and energy spectra of the light charged particles (protons and
-particles) emitted in the Si(E = 112 MeV) + Si
reaction have been measured at the Strasbourg VIVITRON Tandem facility. The
ICARE charged particle multidetector array was used to obtain exclusive spectra
of the light particles in the angular range 15 - 150 degree and to determine
the angular correlations of these particles with respect to the emission angles
of the evaporation residues. The experimental data are analysed in the
framework of the statistical model. The exclusive energy spectra of
-particles emitted from the Si + Si compound system are
generally well reproduced by Monte Carlo calculations using spin-dependent
level densities. This spin dependence approach suggests the onset of large
deformations at high spin. A re-analysis of previous -particle data
from the Si + Si compound system, using the same spin-dependent
parametrization, is also presented in the framework of a general discussion of
the occurrence of large deformation effects in the A ~ 60 mass region.Comment: 25 pages, 6 figure
Diffuse versus square-well confining potentials in modelling @C atoms
Attention: this version- of the manuscript differs from its previously
uploaded version- (arXiv:1112.6158v1) and subsequently published in 2012 J.
Phys. B \textbf{45} 105102 only by a removed typo in Eq.(2) of version-;
there was the erroneous factor "2" in both terms in the right-hand-side of the
Eq.(2) of version-. Now that the typo is removed, Eq.(2) is correct.
A perceived advantage for the replacement of a discontinuous square-well
pseudo-potential, which is often used by various researchers as an
approximation to the actual C cage potential in calculations of
endohedral atoms @C, by a more realistic diffuse potential is
explored. The photoionization of endohedral H@C and Xe@C is
chosen as the case study. The diffuse potential is modelled by a combination of
two Woods-Saxon potentials. It is demonstrated that photoionization spectra of
@C atoms are largely insensitive to the degree of diffuseness
of the potential borders, in a reasonably broad range of 's.
Alternatively, these spectra are found to be insensitive to discontinuity of
the square-well potential either. Both potentials result in practically
identical calculated spectra. New numerical values for the set of square-well
parameters, which lead to a better agreement between experimental and
theoretical data for @C spectra, are recommended for future studies.Comment: 11 pages, 4 figure
LANDSLIDE HAZARD ZONATION MAPPING OF CHAMOLI LANDSLIDES IN REMOTE SENSING AND GIS ENVIRONMENT
Landslides are very common problem in hilly terrain. Chamoli region of Himalaya is highest sensitive zone of the landslide hazards. The purpose of Chamoli landslide study, to observe the important terrain factors and parameters responsible for landslide initiation. Lithological, geomorphological, slope, aspect, landslide, drainage density and lineament density map generated in remote sensing and GIS environment. Data information of related geological terrain obtain through topographic maps, remote sensing images, field visits and geological maps. Geodatabases of all thematic layers prepared through digitization of topographic map and satellite imageries (LISS-III, LISS-IV & ASTER DEM). Integrated all thematic layers applying information value method under GIS environment to map the zonation of landslide hazard zonation map validation and verification completed by field visit. The landslide hazard zonation map classified in four classes very high, high, medium and low
IDENTIFICATION OF IRON OXIDES MINERALS IN WESTERN JAHAJPUR REGION, INDIA USING AVIRIS-NG HYPERSPECTRAL REMOTE SENSING
Hyperspectral remote sensing is being considered as an advanced technique for mineral identification of surficial deposits. In this research different iron oxides minerals such as limonite, goethite has been identified using AVIRIS-NG airborne hyperspectral remote sensing covering the Omkarpura, Itwa, and Chhabadiya mines area in Jahajpur Bhilwara, Rajasthan, India. AVIRIS-NG has shown robust performance in iron oxide identification in the study area. Mineral spectral signatures of the AVIRIS-NG data were compared with spectra of USGS spectral library, and field investigated mineral spectra of iron oxides and found very promising. The results allow us to conclude that due the high signal to noise ratios of the AVIRIS-NG, it is capable to identify the different iron bearing minerals in the visible and infrared portion of the electromagnetic spectrum
A note on q-Bernstein polynomials
In this paper we constructed new q-extension of Bernstein polynomials. Fron
those q-Berstein polynomials, we give some interesting properties and we
investigate some applications related this q-Bernstein polynomials.Comment: 13 page
Deformation effects in the Si+C and Si+Si reaction Search
The possible occurence of highly deformed configurations is investigated in
the Ca and Ni di-nuclear systems as formed in the
Si+C,Si reactions by using the properties of emitted light
charged particles. Inclusive as well as exclusive data of the heavy fragments
and their associated light charged particles have been collected by using the
{\sc ICARE} charged particle multidetector array. The data are analysed by
Monte Carlo CASCADE statistical-model calculations using a consistent set of
parameters with spin-dependent level densities. Significant deformation effects
at high spin are observed as well as an unexpected large Be cluster
emission of a binary nature.Comment: 3 pages latex, 2 eps figures, paper presented in "wokshop on physics
with multidetector array (pmda2000)Calcutta, India (to be published at
PRAMANA, journal of Physics, India
IDENTIFICATION AND MEASUREMENT OF DEFORMATION USING SENTINEL DATA AND PSINSAR TECHNIQUE IN COALMINES OF KORBA
Natural Resources extraction for production of goods increases the stress on land and on the environment. Coal Mines are the primary source for energy production. This process increases the continuous deformation on land by disturbing equilibrium beneath the surface. Interferometry techniques have a capability to detect the minute deformation with millimetre precision on the ground using microwave SAR data. The study area covers the largest open cast coal mines of Asia. In this study for minute deformation identification, Persistent Scatterer Interferometry Synthetic Aperture Radar (PSInSAR) technique has been used. Research focuses on the application of PSInSAR technique for terrain deformation detection using 17 SAR scene of Korba, Chhattisgarh, India acquired by the Sentinel-1 satellite of European Space Agency. This technique is capable to monitor the minute deformation in the coal mines of Korba, Chhattisgarh, India. The results predicted that the area is deformed with the velocity up to 30 mm/year in the coal mines and surroundings areas. The PSInSAR technique with the Sentinel-1 data provides the proficient tool for deformation monitoring in coal mines of Korba
Quadrupole and Hexadecapole Correlations in Rotating Nuclei Studied within the Single-j Shell Model
The influence of quadrupole and hexadecapole residual interactions on
rotational bands is investigated in a single-j shell model. An exact
shell-model diagonalization of quadrupole-plus-hexadecapole interaction can
sometimes produce a staggering of energy levels in the yrast bands.Comment: 15 pages, 9 Postscript figures, REVTEX, to be published in PR
- …