27 research outputs found

    Dissipative stabilization of entangled cat states using a driven Bose-Hubbard dimer

    Full text link
    We analyze a modified Bose-Hubbard model, where two cavities having on-site Kerr interactions are subject to two-photon driving and correlated dissipation. We derive an exact solution for the steady state of this interacting driven-dissipative system, and use it show that the system permits the preparation and stabilization of pure entangled non-Gaussian states, so-called entangled cat states. Unlike previous proposals for dissipative stabilization of such states, our approach requires only a linear coupling to a single engineered reservoir (as opposed to nonlinear couplings to two or more reservoirs). Our scheme is within the reach of state-of-the-art experiments in circuit QED.Comment: 5 pages main text, 5 pages appendices, 6 figure

    Stabilizing two-qubit entanglement with engineered synthetic squeezing

    Full text link
    It is well known that qubits immersed in a squeezed vacuum environment exhibit many exotic phenomena, including dissipative entanglement stabilization. Here, we show that these effects only require interference between excitation and decay processes, and can be faithfully mimicked without non-classical light using simple classical temporal modulation. We present schemes that harnesses this idea to stabilize entanglement between two remote qubits coupled via a transmission line or waveguide, where either the qubit-waveguide coupling is modulated, or the qubits are directly driven. We analyze the resilience of these approaches against various imperfections, and also characterize the trade-off between the speed and quality of entanglement stabilization. Our protocols are compatible with state of the art cavity QED systems.Comment: 16 pages, 6 figure

    Quantum reservoir computing with a single nonlinear oscillator

    Full text link
    Realizing the promise of quantum information processing remains a daunting task, given the omnipresence of noise and error. Adapting noise-resilient classical computing modalities to quantum mechanics may be a viable path towards near-term applications in the noisy intermediate-scale quantum era. Here, we propose continuous variable quantum reservoir computing in a single nonlinear oscillator. Through numerical simulation of our model we demonstrate quantum-classical performance improvement, and identify its likely source: the nonlinearity of quantum measurement. Beyond quantum reservoir computing, this result may impact the interpretation of results across quantum machine learning. We study how the performance of our quantum reservoir depends on Hilbert space dimension, how it is impacted by injected noise, and briefly comment on its experimental implementation. Our results show that quantum reservoir computing in a single nonlinear oscillator is an attractive modality for quantum computing on near-term hardware.Comment: 9 pages, 5 figure
    corecore