4 research outputs found
Engineering of T cell receptor genes to advance T cell therapy: studies into TCR pairing, signaling and binding strength
The incidence of cutaneous melanoma has increased dramatically over the past 40
years. The yearly increase in incidence rates in the Netherlands is on average 4.1%.
Although the 10-year survival rates improved over the last fifteen years, the yearly
mortality rates are further increasing with 2.3%, mainly in elderly patients. In case
cutaneous melanoma metastasizes, the 10-year survival rate drops dramatically to less
than 10%. Table 1.1 lists the U.S. Food and Drug Administration (FDA)-approved treatments
for melanoma. The current standard cares of treatment for melanoma are either
administration of the alkylating agent Dacarbazine, which induces DNA damage, or
administration of high-dose IL-2, which serves as a T cell growth factor. However, both
treatments demonstrate fairly low response rates and significant adverse effects. More
recent FDA-approved treatments for melanoma include: Ipilimumab, an antibody that
blocks the T cell inhibitory molecule CTLA-4 to lower the threshold of T cell activation; Vemurafenib, a drug that inhibits the serine-threonine protein kinase B-RAF (BRAF),
a kinase that is constitutively active in 36 to 54% of melanoma patients due to a V600E
mutation; and pegylated interferon α2b, used as an adjuvant that demonstrates
anti-proliferative effects on melanoma cells and modulates immune responses
T cell receptor fused to CD3ζ: Transmembrane domain of CD3ζ prevents TCR mis-pairing, whereas complete CD3ζ directs functional TCR expression
TCR gene therapy represents a feasible and promising treatment for patients with cancer and virus infections. Currently, this treatment rationale is hampered by diluted surface expression of the TCR transgene and generation of potentially self reactive T-cells, both a direct consequence of mis-pairing with endogenous TCR chains. As we reported previously (Gene Ther 16:1369, 2000; J Immunol 180:7736, 2008), TCR mis-pairing can be successfully addressed by a TCR:CD3ζ fusion protein (i.e., TCR:ζ). Here, we set out to minimize the content of CD3ζ in TCR:ζ, specific for MAGEA1/ HLA-A1, without compromising TCR pairing and function. Domain-exchange and 3D-modeling strategies defined a set of minimal TCR:ζ variants, which, together with a murinized and cysteine-modified TCR (TCR:mu+cys), were tested for functional TCR expression and TCR pairing. Our data with Jurkat T cells show that the CD3ζ transmembrane domain is important for cell-surface expression, whereas the CD3ζ intracellular domain is crucial for T-cell activation. Notably, inability of TCR:ζ to mis-pair was not observed for TCR:mu+cys, which depended exclusivel
Magnetic-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells
T cell-sorting technologies with peptide-MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cells is lacking. Here, we compared the in vitro properties of primary human T cells gene-engineered with gp100280-288/HLA-A2-specific T cell receptor-αβ (TCRαβ) on magnetic-activated cell sorting (MACS) with various peptide-MHC multimers or an antibody against truncated CD34 (tCD34). With respect to peptide-MHC multimers, we observed that Streptamer®, when compared with pentamers and tetramers, improved T cell yield as well as level and stability of enrichment, of TCR-engineered T cells (>65% of peptide-MHC-binding T cells, stable for at least 6 weeks). In agreement with these findings, Streptamer, the only detachable reagent, revealed significant T cell expansion in the first week after MACS. Sorting TCR and tCD34 gene-engineered T cells with CD34 monoclonal antibody (mAb) resulted in the most significant T cell yield and enrichment of T cells (>95% of tCD34 T cells, stable for at least 6 weeks). Notably, T cells sorted with CD34 mAb, when compared with Streptamer, bound about 2-to 3-fold less peptide-MHC but showed superior antigen-specific upregulated expression of CD107a and production of interferon (IFN)-γ. Multiparametric flow cytometry revealed that CD4 + T cells, uniquely present in CD34 mAb-sorted T cells, contributed to enhanced IFN-γ production. Taken together, we postulate that CD34 mAb-based sorting of gene-marked T cells has benefits toward applications of T cell therapy, especially those that require CD4+ T cells
TCR-engineered T cells meet new challenges to treat solid tumors: Choice of antigen, T cell fitness, and sensitization of tumor milieu
Adoptive transfer of T cells gene-engineered with antigen-specific T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to target immunogenic epitopes that are related to oncogenesis and selectively expressed by tumor tissue, and implement strategies that result in optimal T cell fitness. In addition, in particular for the treatment of solid tumors, it is equally necessary to include strategies that counteract the immune-suppressive nature of the tumor micro-environment. Here, we will provide an overview of the current status of TCR gene therapy, and redefine the following three challenges of improvement: "choice of target antigen"; "fitness of T cells"; and "sensitization of tumor milieu." We will categorize and discuss potential strategies to address each of these challenges, and argue that advancement of clinical TCR gene therapy critically depends on developments toward each of the three challenges