535 research outputs found
Non-leptonic two-body decays of the Bc meson in light-front quark model and QCD factorization approach
We study exclusive non-leptonic two-body
decays with (pseudoscalar or vector meson) being factored out in QCD
factorization approach. The non-leptonic decay amplitudes are related to the
product of meson decay constants and the form factors for semileptonic
decays. As inputs in obtaining the branching ratios for a large set of
non-leptonic decays, we use the weak form factors for the semileptonic
decays in the whole kinematical region and the
unmeasured meson decay constants obtained from our previous light-front quark
model. We compare our results of the branching ratios with those of other
theoretical studies.Comment: 11 pages, 3 figures, minor corrections, version to appear in PR
Probing Topcolor-Assisted Technicolor from Like-sign Top Pair Production at LHC
The topcolor-assisted technicolor (TC2) theory predicts tree-level
flavor-changing neutral-current (FCNC) top quark Yukawa couplings with
top-pions. Such FCNC interactions will induce like-sign top quark pair
productions at CERN Large Hadron Collider (LHC). While these rare productions
are far below the observable level in the Standard Model and other popular new
physics models such as the Minimal Supersymmetric Model, we find that in a
sound part of parameter space the TC2 model can enhance the production cross
sections to several tens of fb and thus may be observable at the LHC due to
rather low backgrounds. Searching for these productions at the LHC will serve
as an excellent probe for the TC2 model.Comment: 10 pages, 6 fig
Calculation of the B_{c}leptonic decay constant using the shifted N-expansion method
We give a review and present a comprehensive calculation for the leptonic
constant B_{c} of the low-lying pseudoscalar and vector states of B_{c}-meson
in the framework of static and QCD-motivated nonrelativistic potential models
taking into account the one-loop and two-loop QCD corrections in the short
distance coefficient that governs the leptonic constant of quarkonium
system. Further, we use the scaling relation to predict the leptonic constant
of the nS-states of the (b_bar)c system. Our results are compared with other
models to gauge the reliability of the predictions and point out differences.Comment: 26 page
The Decays to -wave Charmonium by Improved Bethe-Salpeter Approach
We re-calculate the exclusive semileptonic and nonleptonic decays of
meson to a -wave charmonium in terms of the improved Bethe-Salpeter (B-S)
approach, which is developed recently. Here the widths for the exclusive
semileptonic and nonleptonic decays, the form factors, and the charged lepton
spectrums for the semileptonic decays are precisely calculated. To test the
concerned approach by comparing with experimental measurements when the
experimental data are available, and to have comparisons with the other
approaches the results obtained by the approach and those by some approaches
else as well as the original B-S approach, which appeared in literature, are
comparatively presented and discussed.Comment: 33 pages, 5 figures, 3 table
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Search for supersymmetric particles in scenarios with a gravitino LSP and stau NLSP
Sleptons, neutralinos and charginos were searched for in the context of
scenarios where the lightest supersymmetric particle is the gravitino. It was
assumed that the stau is the next-to-lightest supersymmetric particle. Data
collected with the DELPHI detector at a centre-of-mass energy near 189 GeV were
analysed combining the methods developed in previous searches at lower
energies. No evidence for the production of these supersymmetric particles was
found. Hence, limits were derived at 95% confidence level.Comment: 31 pages, 14 figure
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
Wave Function Based Characteristics of Hybrid Mesons
We propose some extensions of the quark potential model to hybrids, fit them
to the lattice data and use them for the purpose of calculating the masses,
root mean square radii and wave functions at the origin of the conventional and
hybrid charmonium mesons. We treat the ground and excited gluonic field between
a quark and an antiquark as in the Born-Oppenheimer expansion, and use the
shooting method to numerically solve the required Schrdinger
equation for the radial wave functions; from these wave functions we calculate
the mesonic properties. For masses we also check through a Crank Nichelson
discretization. For hybrid charmonium mesons, we consider the exotic quantum
number states with and . We also compare
our results with the experimentally observed masses and theoretically predicted
results of the other models. Our results have implications for scalar form
factors, energy shifts, magnetic polarizabilities, decay constants, decay
widths and differential cross sections of conventional and hybrid mesons.Comment: 13 pages, 6 figures, Erratum is submitted to EPJ
Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV
The DELPHI detector at LEP has collected 54 pb^{-1} of data at a
centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV
during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data
were used to measure the average charged particle multiplicity in e+e- -> b
bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the
multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183
GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85
(stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01
(syst). This result is consistent with QCD predictions, while it is
inconsistent with calculations assuming that the multiplicity accompanying the
decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure
- âŠ