479 research outputs found
Vortex motion in a finite-size easy-plane ferromagnet and application to a nanodot
We study the motion of a non-planar vortex in a circular easy-plane
ferromagnet, which imitates a magnetic nanodot. Analysis was done using
numerical simulations and a new collective variable theory which includes the
coupling of Goldstone-like mode with the vortex center. Without magnetic field
the vortex follows a spiral orbit which we calculate. When a rotating in-plane
magnetic field is included, the vortex tends to a stable limit cycle which
exists in a significant range of field amplitude B and frequency for a
given system size L. For a fixed , the radius R of the orbital motion
is proportional to L while the orbital frequency varies as 1/L and is
significantly smaller than . Since the limit cycle is caused by the
interplay between the magnetization and the vortex motion, the internal mode is
essential in the collective variable theory which then gives the correct
estimate and dependency for the orbit radius . Using this
simple theory we indicate how an ac magnetic field can be used to control
vortices observed in real magnetic nanodots.Comment: 15 pages (RevTeX), 14 figures (eps
Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector
I attempt to quantify how far from maximal one should expect the atmospheric
mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to
a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done
by assuming that the solar mass-squared difference is induced by an
"anarchical" first order perturbation, an approach than can naturally lead to
experimentally allowed values for all oscillation parameters. In particular,
both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from
maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case
of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in
the case of an inverted one. Hence, if any of the textures analyzed here has
anything to do with reality, next-generation neutrino experiments can see a
nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the
case of an inverted mass-hierarchy only neutrino factories should be able to
see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde
Vortices in the presence of a nonmagnetic atom impurity in 2D XY ferromagnets
Using a model of nonmagnetic impurity potential, we have examined the
behavior of planar vortex solutions in the classical two-dimensional XY
ferromagnets in the presence of a spin vacancy localized out of the vortex
core. Our results show that a spinless atom impurity gives rise to an effective
potential that repels the vortex structure.Comment: 6 pages, 2 figures, RevTex
Can a CPT Violating Ether Solve ALL Electron (Anti)Neutrino Puzzles?
Assuming that CPT is violated in the neutrino sector seems to be a viable
alternative to sterile neutrinos when it comes to reconciling the LSND anomaly
with the remainder of the neutrino data. There are different (distinguishable)
ways of incorporating CPT violation into the standard model, including
postulating m different from \bar{m}. Here, I investigate the possibility of
introducing CPT violation via Lorentz-invariance violating effective operators
(``Ether'' potentials) which modify neutrino oscillation patterns like ordinary
matter effects. I argue that, within a simplified two-flavor like oscillation
analysis, one cannot solve the solar neutrino puzzle and LSND anomaly while
still respecting constraints imposed by other neutrino experiments, and comment
on whether significant improvements should be expected from a three-flavor
analysis. If one turns the picture upside down, some of the most severe
constrains on such CPT violating terms can already be obtained from the current
neutrino data, while much more severe constraints can arise from future
neutrino oscillation experiments.Comment: 10 pages, 1 eps figure; version to appear in PRD. Comment added,
mistake corrected, results and conclusions unchange
Probing Sterile Neutrino Parameters with Double Chooz, Daya Bay and RENO
In this work, we present a realistic analysis of the potential of the
present-day reactor experiments Double Chooz, Daya Bay and RENO for probing the
existence of sterile neutrinos. We present exclusion regions for sterile
oscillation parameters for each of these experiments, using simulations with
realistic estimates of systematic errors and detector resolutions, and compare
the sterile parameter sensitivity regions we obtain with the existing bounds
from other reactor experiments. We find that these experimental set-ups give
significant bounds on the parameter \Theta_{ee} especially in the low sterile
oscillation region 0.01 < \Delta m_{41}^2 < 0.05 eV^2. These bounds can add to
our understanding of the sterile neutrino sector since there is still a tension
in the allowed regions from different experiments for sterile parameters.Comment: 12 pages, 5 figure
Invisible Z-Boson Decays at e+e- Colliders
The measurement of the invisible Z-boson decay width at e+e- colliders can be
done "indirectly", by subtracting the Z-boson visible partial widths from the
Z-boson total width, or "directly", from the process e+e- -> \gamma \nu
\bar{\nu}. Both procedures are sensitive to different types of new physics and
provide information about the couplings of the neutrinos to the Z-boson. At
present, measurements at LEP and CHARM II are capable of constraining the
left-handed Z\nu\nu-coupling, 0.45 <~ g_L <~ 0.5, while the right-handed one is
only mildly bounded, |g_R| <= 0.2. We show that measurements at a future e+e-
linear collider at different center-of-mass energies, \sqrt{s} = MZ and
\sqrt{s}s ~ 170 GeV, would translate into a markedly more precise measurement
of the Z\nu\nu-couplings. A statistically significant deviation from Standard
Model predictions will point toward different new physics mechanisms, depending
on whether the discrepancy appears in the direct or the indirect measurement of
the invisible Z-width. We discuss some scenarios which illustrate the ability
of different invisible Z-boson decay measurements to constrain new physics
beyond the Standard Model
- âŠ