293 research outputs found
The microscopic theory of fission
Fission-fragment properties have been calculated for thermal neutron-induced
fission on a target, using constrained
Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction.
A quantitative criterion based on the interaction energy between the nascent
fragments is introduced to define the scission configurations. The validity of
this criterion is benchmarked against experimental measurements of the kinetic
energies and of multiplicities of neutrons emitted by the fragments.Comment: 8 page, 4 figures, to be published in Proceedings of the 4th
International Workshop on Fission and Fission Product Spectroscop
Microscopic and non-adiabatic Schr\"odinger equation derived from the Generator Coordinate Method based on 0 and 2 quasiparticle HFB states
A new approach called the Schr\"odinger Collective Intrinsic Model (SCIM) has
been developed to achieve a microscopic description of the coupling between
collective and intrinsic excitations. The derivation of the SCIM proceeds in
two steps. The first step is based on a generalization of the symmetric moment
expansion of the equations derived in the framework of the Generator Coordinate
Method (GCM), when both Hartree-Fock-Bogoliubov (HFB) states and
two-quasi-particle excitations are taken into account as basis states. The
second step consists in reducing the generalized Hill and Wheeler equation to a
simpler form to extract a Schr\"odinger-like equation. The validity of the
approach is discussed by means of results obtained for the overlap kernel
between HFB states and two-quasi-particle excitations at different
deformations.Comment: 27 pages, 12 figures, submitted to Phys. Rev.
Bessel bridges decomposition with varying dimension. Applications to finance
We consider a class of stochastic processes containing the classical and
well-studied class of Squared Bessel processes. Our model, however, allows the
dimension be a function of the time. We first give some classical results in a
larger context where a time-varying drift term can be added. Then in the
non-drifted case we extend many results already proven in the case of classical
Bessel processes to our context. Our deepest result is a decomposition of the
Bridge process associated to this generalized squared Bessel process, much
similar to the much celebrated result of J. Pitman and M. Yor. On a more
practical point of view, we give a methodology to compute the Laplace transform
of additive functionals of our process and the associated bridge. This permits
in particular to get directly access to the joint distribution of the value at
t of the process and its integral. We finally give some financial applications
to illustrate the panel of applications of our results
Ground state correlations and mean-field in O
We use the coupled cluster expansion ( method) to generate the
complete ground state correlations due to the NN interaction. Part of this
procedure is the calculation of the two-body G matrix inside the nucleus in
which it is being used. This formalism is being applied to in a
configuration space of 50 . The resulting ground state wave
function is used to calculate the binding energy and one- and two-body
densities for the ground state of .Comment: 9 pages, 9 figures, LaTe
Magnetic Moment of the Fragmentation Aligned 61Fe(9/2)+ Isomer
We report on the g factor measurement of the isomer in (). The isomer was produced and spin-aligned via a projectile-fragmentation
reaction at intermediate energy, the Time Dependent Perturbed Angular
Distribution (TDPAD) method being used for the measurement of the g factor. For
the first time, due to significant improvements of the experimental technique,
an appreciable residual alignment of the isomer has been observed, allowing a
precise determination of its g factor: . Comparison of the
experimental g factor with shell-model and mean field calculations confirms the
spin and parity assignments and suggests the onset of deformation due
to the intrusion of Nilsson orbitals emerging from the .Comment: 4 figures. Submitted to Phys. Rev. Let
Exploratory fMRI analysis without spatial normalization
Author Manuscript received 2010 March 11. 21st International Conference, IPMI 2009, Williamsburg, VA, USA, July 5-10, 2009. ProceedingsWe present an exploratory method for simultaneous parcellation of multisubject fMRI data into functionally coherent areas. The method is based on a solely functional representation of the fMRI data and a hierarchical probabilistic model that accounts for both inter-subject and intra-subject forms of variability in fMRI response. We employ a Variational Bayes approximation to fit the model to the data. The resulting algorithm finds a functional parcellation of the individual brains along with a set of population-level clusters, establishing correspondence between these two levels. The model eliminates the need for spatial normalization while still enabling us to fuse data from several subjects. We demonstrate the application of our method on a visual fMRI study.McGovern Institute for Brain Research at MIT. Neurotechnology ProgramNational Science Foundation (U.S.) (CAREER Grant 0642971)National Institutes of Health (U.S.) (NIBIB NAMIC U54-EB005149)National Institutes of Health (U.S.) (NCRR NAC P41-RR13218
Fission Dynamics: The Quest of a Temperature Dependent Nuclear Viscosity
oai:ojs2.jnp.chitkara.edu.in:article/2This paper presents a journey within some open questions about the current use of a temperature dependent nuclear viscosity in models of nuclear fission and proposes an alternative experimental approach by using systems of intermediate fissility. This study is particularly relevant because: i) systems of intermediate fissility offer a suitable frame-work since the intervals between the compound nucleus and scission point temperatures with increasing excitation energy are much smaller than in the case of heavier systems, ii) the dependence of viscosity on the temperature may change with the fissility of the composite system; iii) the opportunity to measure also observables in the evaporation residues channel translates into a larger set of effective constraints for the models
Parity Violating Measurements of Neutron Densities
Parity violating electron nucleus scattering is a clean and powerful tool for
measuring the spatial distributions of neutrons in nuclei with unprecedented
accuracy. Parity violation arises from the interference of electromagnetic and
weak neutral amplitudes, and the of the Standard Model couples primarily
to neutrons at low . The data can be interpreted with as much confidence
as electromagnetic scattering. After briefly reviewing the present theoretical
and experimental knowledge of neutron densities, we discuss possible parity
violation measurements, their theoretical interpretation, and applications. The
experiments are feasible at existing facilities. We show that theoretical
corrections are either small or well understood, which makes the interpretation
clean. The quantitative relationship to atomic parity nonconservation
observables is examined, and we show that the electron scattering asymmetries
can be directly applied to atomic PNC because the observables have
approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.
- …