34 research outputs found
Motion Direction Influences Surface Segmentation in Stereo Transparency
To perceive multiple overlapping surfaces in the same location of the visual field (transparency), the visual system must determine which surface elements belong together, and should be integrated, and which should be kept apart. Spatial relations between surfaces, such as depth order, must also be determined. This paper details two experiments examining the interaction of motion direction and disparity cues on the perception of depth order and surface segmentation in transparency. In Experiment 1, participants were presented with random-dot stereograms, where transparent planes were defined by differences in motion direction and disparity. Participants reported the direction of motion of the front surface. Results revealed marked effects of motion direction on perceived depth order. These biases interact with disparity in an additive manner, suggesting that the visual system integrates motion direction with other available cues to surface segmentation. This possibility was tested further in Experiment 2. Participants were presented with two intervals; one containing motion and disparity defined transparent planes, the other containing a volume of moving dots. Inter-plane disparity was varied to find thresholds for the correct identification of the transparent interval. Thresholds depended on motion direction: thresholds were lower when disparities and directions in the transparency interval matched participants’ preferred depth order, compared to conditions where disparity and direction were in conflict. These results suggest that motion direction influences the judgement of depth order even in the presence of other visual cues, and that the assignment of depth order may play an important role in segmentation
Representation and Measurement of Stereoscopic Volumes
Binocular disparity information provides the human visual system with a basis for the compelling perception of both three-dimensional (3D) object shape, and of the 3D space between objects. However, while an extensive body of research exists into the perception of disparity-defined surface shape, relatively little research has been conducted on the associated perception of disparity-defined volume. In this paper, we report three experiments that examine this aspect of binocular vision. Participants were asked to make judgements about the 3D spread, location-in-depth and 3D shape of stereoscopic volumes. Volumes were comprised of random dots with disparities drawn from a uniform distribution, a Gaussian distribution, or a combination of both. These results were compared to two models: one of these made judgements about stereoscopic volumes using information about the distributions of disparities in each stimulus, while the other was limited to only maximum and minimum disparity information. Psychophysical results were best accounted for by the maximum-minimum decision rule model. This suggests that, although binocular vision affords a compelling phenomenal sense of 3D volume, when required to make judgements about such volumes, the visual system’s default strategies make only limited use of available binocular disparity signals
Mechanisms for similarity matching in disparity measurement
Early neural mechanisms for the measurement of binocular disparity appear to operate in a manner consistent with cross-correlation-like processes. Consequently, cross-correlation, or cross-correlation-like procedures have been used in a range of models of disparity measurement. Using such procedures as the basis for disparity measurement creates a preference for correspondence solutions that maximize the similarity between local left and right eye image regions. Here, we examine how observers' perception of depth in an ambiguous stereogram is affected by manipulations of luminance and orientation-based image similarity. Results show a strong effect of coarse-scale luminance similarity manipulations, but a relatively weak effect of finer-scale manipulations of orientation similarity. This is in contrast to the measurements of depth obtained from a standard cross-correlation model. This model shows strong effects of orientation similarity manipulations and weaker effects of luminance similarity. In order to account for these discrepancies, the standard cross-correlation approach may be modified to include an initial spatial frequency filtering stage. The performance of this adjusted model most closely matches human psychophysical data when spatial frequency filtering favors coarser scales. This is consistent with the operation of disparity measurement processes where spatial frequency and disparity tuning are correlated, or where disparity measurement operates in a coarse-to-fine manner. © 2014 Goutcher and Hibbard
Impairment of cyclopean surface processing by disparity-defined masking stimuli.
Binocular disparity signals allow for the estimation of three-dimensional shape, even in the absence of monocular depth cues. The perception of such disparity-defined form depends, however, on the linkage of multiple disparity measurements over space. Performance limitations in cyclopean tasks thus inform us about errors arising in disparity measurement and difficulties in the linkage of such measurements. We used a cyclopean orientation discrimination task to examine the perception of disparity-defined form. Participants were presented with random-dot sinusoidal modulations in depth and asked to report whether they were clockwise or counter-clockwise rotated. To assess the effect of different noise structures on measurement and linkage processes, task performance was measured in the presence of binocular, random-dot masks, structured as either antiphase depth sinusoids, or as random distributions of dots in depth. For a fixed number of surface dots, the ratio of mask-to-surface dots was varied to obtain thresholds for orientation discrimination. Antiphase masks were found to be more effective than random depth masks, requiring a lower mask-to-surface dot ratio to inhibit performance. For antiphase masks, performance improved with decreased cyclopean frequency, increased disparity amplitude, and/or an increase in the total number of stimulus dots. Although a cross-correlation model of disparity measurement could account for antiphase mask performance, random depth masking effects were consistent with limitations in relative disparity processing. This suggests that performance is noise-limited for antiphase masks and complexity-limited for random masks. We propose that use of differing mask types may prove effective in understanding these distinct forms of impairment
Encoding and estimation of first-and second-order binocular disparity in natural images
Research supported by BBSRC Grant Nos. BB/G004803/1 (RG) and BB/K018973/1 (PH/DH).The first stage of processing of binocular information in the visual cortex is performed by mechanisms that are bandpass-tuned for spatial frequency and orientation. Psychophysical and physiological evidence have also demonstrated the existence of second-order mechanisms in binocular processing, which can encode disparities that are not directly accessible to first-order mechanisms. We compared the responses of first- and second-order binocular filters to natural images. We found that the responses of the second-order mechanisms are to some extent correlated with the responses of the first-order mechanisms, and that they can contribute to increasing both the accuracy, and depth range, of binocular stereopsis.Publisher PDFPeer reviewe
Surface slant impairs disparity discontinuity discrimination
Binocular disparity signals are highly informative about the three-dimensional structure of visual scenes, including aiding the detection of depth discontinuities between surfaces. Here, we examine factors affecting sensitivity to such surface discontinuities. Participants were presented with random dot stereograms depicting two planar surfaces slanted in opposite directions and were asked to judge the sign of the depth discontinuity created where those surfaces met. Although the judgement was focussed on the adjacent edges, the precision of depth discontinuity discrimination depended upon the slant of the two surfaces: increasing surface slants to ±60° increased discontinuity discrimination thresholds by, on average, a factor of 5. Control experiments examining discontinuity discrimination across surfaces with identical slants showed either biases in discontinuity judgements or reduced threshold elevation. These results suggest that sensitivity to depth discontinuities is affected by processing limitations in both local absolute disparity measurement mechanisms and mechanisms selective for disparity differences. As further evidence in support of this conclusion, we show that our results are well-described by a model of discontinuity discrimination based on the encoding of local differences in relative disparity
Surface continuity and discontinuity bias the perception of stereoscopic depth
Binocular disparity signals can provide high acuity information about the positions of points, surfaces, and objects in three-dimensional space. For some stimulus configurations, however, perceived depth is known to be affected by surface organization. Here we examine the effects of surface continuity and discontinuity on such surface organization biases. Participants were presented with a series of random dot surfaces, each with a cumulative Gaussian form in depth. Surfaces varied in the steepness of disparity gradients, via manipulation of the standard deviation of the Gaussian, and/or the presence of differing forms of surface discontinuity. By varying the relative disparity between surface edges, we measured the points of subjective equality, where surfaces of differing steepness and/or discontinuity were perceptually indistinguishable. We compare our results to a model that considers sensitivity to different frequencies of disparity modulation. Across a series of experiments, the observed patterns of change in points of subjective equality suggest that perceived depth is determined by the integration of measures of relative disparity, with a bias toward sharp changes in disparity. Such disparities increase perceived depth when they are in the same direction as the overall disparity. Conversely, perceived depth is reduced by the presence of sharp disparity changes that oppose the sign of the overall depth change
Image statistics determine the integration of visual cues to motion-in-depth
Motion-in-depth perception is critical in enabling animals to avoid hazards and respond to potential threats. For humans, important visual cues for motion-in-depth include changing disparity (CD) and changing image size (CS). The interpretation and integration of these cues depends upon multiple scene parameters, such as distance moved, object size and viewing distance, posing a significant computational challenge. We show that motion-in-depth cue integration depends upon sensitivity to the joint probabilities of the scene parameters determining these signals, and on the probability of CD and CS signals co-occurring. Models that took these factors into account predicted human performance in speed-in-depth and cue conflict discrimination tasks, where standard linear integration models could not. These results suggest that cue integration is affected by both the uncertainty of sensory signals and the mapping of those signals to real-world properties. Evidence of a role for such mappings demonstrates the importance of scene and image statistics to the processes underpinning cue integration and the perception of motion-in-depth
Luminance contrast provides metric depth information
The perception of depth from retinal images depends on information from multiple visual cues. One potential depth cue is the statistical relationship between luminance and distance; darker points in a local region of an image tend to be farther away than brighter points. We establish that this statistical relationship acts as a quantitative cue to depth. We show that luminance variations affect depth in naturalistic scenes containing multiple cues to depth. This occurred when the correlation between variations of luminance and depth was manipulated within an object, but not between objects. This is consistent with the local nature of the statistical relationship in natural scenes. We also showed that perceived depth increases as contrast is increased, but only when the depth signalled by luminance and binocular disparity are consistent. Our results show that the negative correlation between luminance and distance, as found under diffuse lighting, provides a depth cue that is combined with depth from binocular disparity, in a way that is consistent with the simultaneous estimation of surface depth and reflectance variations. Adopting more complex lighting models such as ambient occlusion in computer rendering will thus contribute to the accuracy as well as the aesthetic appearance of three-dimensional graphics