36 research outputs found
T cell receptor selection by and recognition of two class I major histocompatibility complex-restricted antigenic peptides that differ at a single position.
Peptides derived from HLA-Cw3 and HLA-A24 within region 170-179 differ by a single substitution, at position 173, and are both presented by the class I major histocompatibility complex molecule H-2Kd for recognition by murine cytolytic T lymphocytes (CTLs). As a first approach to understand the way T cell receptors (TCRs) intact with the HLA peptides, we have analyzed the TCR selection by, and recognition of, the two HLA antigenic sites. First, we have compared the TCR repertoires selected by HLA-Cw3 and HLA-A24, not only by sequencing the TCRs carried by CTL clones isolated and grown in vitro, but also by analyzing the TCRs expressed in vivo by peritoneal exudate lymphocytes from immune animals. Second, we have compared the TCR crossrecognition of HLA-A24 by CTLs selected by HLA-Cw3 with that of HLA-Cw3 by CTLs selected by HLA-A24. The combined analysis of TCR selection by and recognition of these two related HLA antigenic sites provides evidence that the TCR beta junctional regions interact with the amino-terminal part of the HLA peptides
Rab-GTPase binding effector protein 2 (RABEP2) is a primed substrate for Glycogen Synthase kinase-3 (GSK3)
Glycogen synthase kinase-3 (GSK3) regulates many physiological processes through phosphorylation of a diverse array of substrates. Inhibitors of GSK3 have been generated as potential therapies in several diseases, however the vital role GSK3 plays in cell biology makes the clinical use of GSK3 inhibitors potentially problematic. A clearer understanding of true physiological and pathophysiological substrates of GSK3 should provide opportunities for more selective, disease specific, manipulation of GSK3. To identify kinetically favourable substrates we performed a GSK3 substrate screen in heart tissue. Rab-GTPase binding effector protein 2 (RABEP2) was identified as a novel GSK3 substrate and GSK3 phosphorylation of RABEP2 at Ser200 was enhanced by prior phosphorylation at Ser204, fitting the known consensus sequence for GSK3 substrates. Both residues are phosphorylated in cells while only Ser200 phosphorylation is reduced following inhibition of GSK3. RABEP2 function was originally identified as a Rab5 binding protein. We did not observe co-localisation of RABEP2 and Rab5 in cells, while ectopic expression of RABEP2 had no effect on endosomal recycling. The work presented identifies RABEP2 as a novel primed substrate of GSK3, and thus a potential biomarker for GSK3 activity, but understanding how phosphorylation regulates RABEP2 function requires more information on physiological roles of RABEP2
SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling
Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh) signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1), of the endosomal sorting complex (RABEP2, ERC1), and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14) at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure
Two distinct effectors of the small GTPase Rab5 cooperate in endocytic membrane fusion.
Using the yeast two-hybrid system, we have identified a novel 62 kDa coiled-coil protein that specifically interacts with the GTP-bound form of Rab5, a small GTPase that regulates membrane traffic in the early endocytic pathway. This protein shares 42% sequence identity with Rabaptin-5, a previously identified effector of Rab5, and we therefore named it Rabaptin-5beta. Like Rabaptin-5, Rabaptin-5beta displays heptad repeats characteristic of coiled-coil proteins and is recruited on the endosomal membrane by Rab5 in a GTP-dependent manner. However, Rabaptin-5beta has features that distinguish it from Rabaptin-5. The relative expression levels of the two proteins varies in different cell types. Rabaptin-5beta does not heterodimerize with Rabaptin-5, and forms a distinct complex with Rabex-5, the GDP/GTP exchange factor for Rab5. Immunodepletion of the Rabaptin-5beta complex from cytosol only partially inhibits early endosome fusion in vitro, whereas the additional depletion of the Rabaptin-5 complex has a stronger inhibitory effect. Fusion activity can mostly be recovered by addition of the Rabaptin-5 complex alone, but maximal fusion efficiency requires the presence of both Rabaptin-5 and Rabaptin-5beta complexes. Our results suggest that Rab5 binds to at least two distinct effectors which cooperate for optimal endocytic membrane docking and fusion
The GDP/GTP cycle of Rab5 in the regulation of endocytotic membrane traffic
In eukaryotic cells, endocytosis plays a central role in the maintenance of cellular organization and func-tion. The endocytotic route is composed of separate stations that carry out specialized functions uch as up-take of nutrients, clearance of metabolites from the medium, internalization and down-regulation f recep-tors, turnover of membranes, and antigen processing. Proteins, lipids, and solutes internalized at the cell sur-face are first transported into early endosomes. The best-characterized route to this compartment is the clathrin-coated-vesicles-mediated route (Robinson 1994), but non-clathrin-mediated mechanisms also con-tribute to the endocytotic traffic (Watts and Marsh 1992; Sandvig and van Deurs 1994). From the early endosomes, internalized constituents can be eithe
H-2-restricted cytolytic T lymphocytes specific for HLA display T cell receptors of limited diversity
We previously showed that H-2Kd-restricted cytotoxic T lymphocyte (CTL) clones specific for a single nonapeptide derived from the Plasmodium berghei circumsporozoite (PbCS) protein displayed T cell receptors (TCRs) of highly diverse primary structure. We have now analyzed the TCR repertoire of CTLs that recognize a peptide derived from the human class I major histocompatibility complex (MHC) molecule HLA-Cw3 in association with the same murine class I MHC molecule H-2Kd. We first sequenced the TCR alpha and beta genes of the CTL clone Cw3/1.1 and, based on this genomic analysis, the TCR alpha and beta cDNA junctional regions of 23 independent H-2Kd-restricted CTL clones specific for HLA-Cw3. The results show that the TCR chains display very limited heterogeneity, both in terms of V alpha, J alpha, V beta, and J beta segments, and in terms of length and sequence of the CDR3 alpha and beta loops. The TCR repertoire used in vivo was then analyzed by harvesting CTL populations from the peritoneal cavity of immune mice. The peritoneal exudate lymphocytes (PELs) displayed HLA-Cw3-specific cytolytic activity in the absence of any stimulation in vitro. Remarkably, most of these freshly isolated PELs expressed TCRs that shared the same structural features as those from HLA-Cw3-reactive CTL clones. Thus, our results show that a peptide from HLA-Cw3 presented by H-2Kd selects CTLs that bear TCRs of very limited diversity in vivo. When taken together with the high diversity of the TCRs specific for the PbCS peptide, these findings suggest that natural tolerance to self peptides presented by class I MHC molecules may substantially reduce the size of the TCR repertoire of CTLs specific for antigenic peptides homologous to self
The diversity of antigen-specific TCR repertoires reflects the relative complexity of epitopes recognized.
Antigen-selected T cell receptor (TCR) repertoires vary in complexity from very limited to extremely diverse. We have previously characterized two different CD8 T cell responses, which are restricted by the same mouse major histocompatibility complex (MHC) class I molecule, H-2 Kd. The TCR repertoire in the response against a determinant from Plasmodium berghei circumsporozoite protein (PbCS; region 252-260) is very diverse, whereas TCRs expressed by clones specific for a determinant in region 170-179 of HLA-CW3 (human) MHC class I molecule show relatively limited structural diversity. We had already demonstrated that cytolytic T lymphocyte (CTL) clones specific for the PbCS peptide display diverse patterns of antigen recognition when tested with a series of single Ala-substituted PbCS peptides or mutant. H-2 Kd molecules. We now show that CW3-specific CTL clones display much less diverse patterns of recognition. Our earlier functional studies with synthetic peptide variants suggested that the optimal peptides recognized were 9 (or 8) residues long for PbCS and 10 residues long for CW3. We now present more direct evidence that the natural CW3 ligand is indeed a 10-mer. Our functional data together with molecular modeling suggest that the limited TCR repertoire selected during the CW3 response is not due to a paucity of available epitopes displayed at the surface of the CW3 peptide/Kd complex. We discuss other factors, such as the expression of similar self MHC peptide sequences, that might be involved in trimming this TCR repertoire