31 research outputs found
The glutamate receptor delta 2 in relation to cerebellar development and plasticity
Understanding what are the mechanisms that strengthen, stabilize and restrict synaptic innervation is a relevant topic in glutamate receptor delta 2 (GluR delta 2)-related research. It also involves targeting and selection of afferent input during formation of the neuronal circuitry in the cerebellar cortex and its functioning. This review will focus oil the role of GluR delta 2, one of the main players in this field. Special emphasis will be placed on the processes that regulate the rapid translocation from climbing fibres to parallel fibres of GluR delta 2 and the role of GluR delta 2 in the reduction of supernumerary climbing fibre contacts on a single Purkinje cell. Furthermore, GluR delta 2 knockout mice show ataxia and impaired motor coordination, suggesting that the presence of GluR delta 2 plays an important role in controlling cerebellar functioning. (c) 2007 Elsevier Ltd. All rights reserved
Localization and functional roles of corticotropin-releasing factor receptor type 2 in the cerebellum
The corticotropin-releasing factor (CRF) type 2 receptor has three splice variants alpha, beta, and gamma. In the rodent brain only CRF-R2 alpha is present. In the cerebellum, CRF-R2 alpha has two different isoforms: a full-length form (fl) and truncated (tr). Both forms CRF-R2 have a unique cellular distribution. During postnatal cerebellar development, the expression patterns of tr and fl isoforms are changing. This suggests that, CRF and the related peptide urocortin (UCN) could play distinct roles in the immature and adult cerebellum, acting via different receptors subtypes. This review focuses on differences in the distribution of each isoform of CRF-R2 in view of their relationship to CRF and UCN release sites and their possible functional implications. Moreover, it includes novel findings of molecular pathways activating CRF-R2 isoforms through which CRF and UCN excert their specific actions
Increased biogenesis of glucagon-containing secretory granules and glucagon secretion in BIG3-knockout mice
Objective: Although both insulin and glucagon are intimately involved in the regulation of glucose homeostasis, the intrinsic control of glucagon secretion, including the biogenesis and exocytosis of glucagon-containing granules, is far less understood compared with that of insulin. As Brefeldin A-inhibited guanine nucleotide exchange protein 3 (BIG3) is a negative regulator of insulin-granule biogenesis and insulin secretion, we investigated whether BIG3 plays any role in alpha-cells and glucagon secretion.
Methods: We examined the expression of BIG3 in islet cells by immuno-fluorescence and confocal microscopy, and measured glucagon production and secretion in BIG3-depleted and wild-type mice, islets and cells.
Results: BIG3 is highly expressed in pancreatic alpha-cells in addition to beta-cells, but is absent in delta-cells. Depletion of BIG3 in alpha-cells leads to elevated glucagon production and secretion. Consistently, BIG3-knockout (BKO) mice display increased glucagon release under hypoglycemic conditions.
Conclusions: Together with our previous studies, the current data reveal a conserved role for BIG3 in regulating alpha- and beta-cell functions. We propose that BIG3 negatively regulates hormone production at the secretory granule biogenesis stage and that such regulatory mechanism may be used in secretory pathways of other endocrine cells
Crn7 interacts with AP-1 and is required for the maintenance of Golgi morphology and protein export from the Golgi
Crn7 is a novel cytosolic mammalian WD-repeat protein of unknown function that associates with Golgi membranes. Here, we demonstrate that Crn7 knockdown by small interfering-RNA results in dramatic changes in the Golgi morphology and function. First, the Golgi ribbon is disorganized in Crn7 KD cells. Second, the Golgi export of several marker proteins including VSV envelope G glycoprotein is greatly reduced but not the retrograde protein import into the Golgi complex. We further establish that Crn7 co-precipitates with clathrin adaptor AP-1 but is not required for AP-1 targeting to Golgi membranes. We identify tyrosine 288-based motif as part of a canonical YXX Phi sorting signal and a major mu 1-adaptin binding site in vitro. This study provides the first insight into the function of mammalian Crn7 protein in the Golgi complex
The dynamic developmental localization of the full-length corticotropin-releasing factor receptor type 2 in rat cerebellum
Corticotropin releasing factor receptor 2 (CRF-R2) is strongly expressed in the cerebellum and plays an important role in the development of the cerebellar circuitry, particularly in the development of the dendritic trees and afferent input to Purkinje cells. However, the mechanisms responsible for the distribution and stabilization of CRF-R2 in the cerebellum are not well understood. Here, we provide the first detailed analysis of the cellular localization of the full-length form of CRF-R2 in rat cerebellum during early postnatal development. We document unique and developmentally regulated subcellular distributions of CRF-R2 in cerebellar cell types, e.g. granule cells after postnatal day 15. The presence of one or both receptor isoforms in the same cell may provide a molecular basis for distinct developmental processes. The full-length form of CRF-R2 may be involved in the regulation of the first stage of dendritic growth and at later stages in the controlling of the structural arrangement of immature cerebellar circuits and in the autoregulatory pathway of the cerebellum
Corticotropin-releasing factor induces functional and structural synaptic remodelling in acute stress
10.1038/s41398-021-01497-2Translational Psychiatry11137
A Modular Organization of LRR Protein-Mediated Synaptic Adhesion Defines Synapse Identity
Pyramidal neurons express rich repertoires of leucine-rich repeat (LRR)-containing adhesion molecules with similar synaptogenic activity in culture. The in vivo relevance of this molecular diversity is unclear. We show that hippocampal CA1 pyramidal neurons express multiple synaptogenic LRR proteins that differentially distribute to the major excitatory inputs on their apical dendrites. At Schaffer collateral (SC) inputs, FLRT2, LRRTM1, and Slitrk1 are postsynaptically localized and differentially regulate synaptic structure and function. FLRT2 controls spine density, whereas LRRTM1 and Slitrk1 exert opposing effects on synaptic vesicle distribution at the active zone. All LRR proteins differentially affect synaptic transmission, and their combinatorial loss results in a cumulative phenotype. At temporoammonic (TA) inputs, LRRTM1 is absent; FLRT2 similarly controls functional synapse number, whereas Slitrk1 function diverges to regulate postsynaptic AMPA receptor density. Thus, LRR proteins differentially control synaptic architecture and function and act in input-specific combinations and a context-dependent manner to specify synaptic properties.status: publishe