9 research outputs found
Determining Factors Influencing Nuclear Envelope and Nuclear Pore Complex Structure.
The cell’s nuclear envelope (NE) has pores that are stabilized by nuclear pore complexes (NPC), large proteinaceous structures whose function is to mediate transport between the nucleus and cytoplasm. Although the transport process is well studied, the mechanism of NPC assembly from its protein constituents (nucleoporins) is less understood. To investigate NPC biogenesis, I investigated mutants that result in defective NPCs in Saccharomyces cerevisiae.
First, I examined mutants in the GPI anchor pathway (gpi1) that resulted in mislocalized nucleoporins by testing two models: gpi1 mutants cause either misregulation of N-linked glycosylation or alter membrane properties. To test the models, I combined gpi1 mutants with a nucleoporin mutant that is susceptible to disruption of glycosylation or with mutants in membrane bending proteins. Select double mutant of each class rescued the growth phenotype of the single mutants. These results indicate that both of the models play a role in NPC assembly.
Secondly, we found the proteasome, a complex responsible for degrading proteins is involved in NPC assembly. In order to further investigate interactions between the NPC and the proteasome, I combined the proteasomal mutant with 3 classes of nuclear pore assembly (npa) mutants to test for synergistic interactions. Positive interactions were observed as the proteasome mutant rescued a temperature sensitive npa mutant providing further evidence for the role of the proteasome in NPC assembl
An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome
Inflammasomes are innate immune sensors that respond to pathogen and damage-associated signals with caspase-1 activation, IL-1β and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the Cryopyrin Associated Periodic Syndromes (CAPS) and trigger spontaneous inflammasome activation and IL-1β oversecretion, led to successful treatment with IL-1 blocking agents1. Herein, we report a de novo missense mutation, c.1009A>T, p.Thr337Ser, in the nucleotide-binding domain of inflammasome component NLRC4 (IPAF/CARD12) that causes early-onset recurrent fever flares and Macrophage Activation Syndrome (MAS). Functional analyses demonstrated spontaneous inflammasome formation and production of the inflammasome-dependent cytokines IL-1β and IL-18, the latter exceeding levels in CAPS. The NLRC4 mutation caused constitutive caspase-1 cleavage in transduced cells and increased production of IL-18 by both patient and NLRC4 mutant macrophages. Thus, we describe a novel monoallelic inflammasome defect that expands the monogenic autoinflammatory disease spectrum to include MAS and suggests novel targets for therapy
Bispecific Antibody Use in Patients With Lymphoma and Multiple Myeloma
This article endeavors to navigate the clinical journey of bispecific antibodies (BsAbs), from elucidating common toxicities and management strategies to examining novel agents and broadening access in community health care. These drugs, commonly through T-cell activation, result in shared adverse events such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Variations in target antigens and designs, however, might introduce unique toxicities for different BsAbs, warranting specific management approaches. Recent US Food and Drug Administration approvals of BsAbs targeting CD3 + T cells linked to CD20 for non-Hodgkin lymphoma and to B-cell maturation antigen or GPRC5D for multiple myeloma have transformed the treatment landscape for hematologic malignancies. Emerging new agents promise further enhancement and safety, exploring novel antigen targets, innovative structures such as trispecific antibodies, and the engagement of diverse immune cells. Simultaneously, the expansion of BsAbs into community practices is underway, demanding a multifaceted strategy that encompasses educational initiatives, operational adaptations, and collaborative frameworks. This ensures comprehensive treatment access, allowing every patient, irrespective of geographical or socioeconomic status, to benefit from these advancements in cancer therapy
Recommended from our members
Statins enhance the chemosensitivity of R-CHOP in diffuse large B-cell lymphoma
The beneficial effect of statins on the anti-lymphoma activity of the rituximab-based chemotherapy regimen is controversial. Here, we retrospectively reviewed patients with naïve-treated advanced diffuse large B-cell lymphoma (DLBCL) receiving frontline R-CHOP, and for whom data regarding differential statins use was available at the time of initiation of treatment. We observe that patients treated with statins and R-CHOP experienced a significantly higher CR rate as compared to those who received R-CHOP only. We further show that patients receiving medium or high intensity statins and R-CHOP experienced a significantly higher CR as compared to those treated with R-CHOP. Six-year progression free survival was higher for patients who received medium or higher intensity statins as compared to low or no statins. The potential contribution of cholesterol pathway in doxorubicin sensitivity was supported by in vitro/in vivo studies. Our study suggests that targeting cholesterol-using lovastatin could be a therapeutic strategy to enhance responses to R-CHOP in DLBCL patients
Recommended from our members
Use of Medium Potency Statins Is Associated with Improved Outcomes after Frontline RCHOP in Patients with Diffuse Large B-Cell Lymphoma (DLBCL)
Background: Pre-clinical studies show that statins may improve the efficacy of chemoimmunotherapy in patients with DLBCL, through interference with cell membrane-initiated signaling pathways. Clinical retrospective studies, however, yield conflicting data, due to heterogeneous properties of statins, including potency and hydrophilicity. Methods: This is a retrospective analysis of patients with previously untreated, advanced stage DLBCL, non-double hit, treated with frontline R-CHOP between 01/01/2000 and 09/01/2019 (data cut-off 04/15/2020) at MD Anderson Cancer Center, and for whom data regarding statin use at time of initiation of treatment were available. Lugano 2014 response criteria were applied retrospectively for response assessment. Cellular cholesterol levels were analyzed in 6 DLBCL cell lines using an Amplex red fluorometric assay. A doxorubicin (DXR)-resistant cell line was generated exposing SUDHL4 cells to escalating doses of DXR; a DXR-resistant DLBCL patient-derived xenograft (PDX) model was established through serial transplantation and exposure to DXR. Results: 271 patients were included in the analysis, 182 (67%) were older than 60 years, 134 (49%) were male, 212 (72%) had stage IV disease, and 217 (80%) had an IPI score > 3; upon pathological review, 38 (36%) cases were non-GCB type, and 18 (28%) were double-expressors; 214 (79%) were able to complete all planned 6 cycles of RCHOP. Seventy-nine (29%) patients received statins at time of initiation of chemoimmunotherapy: 15 patients received low potency statin, 51 medium and 13 high; 18 patients received hydrophilic statins and 61 lipophilic. Patients receiving statins were significantly older as compared to patients who did not (p<0.001); no other significant difference in baseline characteristics was observed when comparing the 2 groups. Overall, 265 out of 271 patients were evaluable for response, as 6 stopped treatment because of toxicity before first response assessment. Among these, ORR was 95% (252/265) and CR rate was 62% (165/265). ORR rate was identical in patients who were treated with statin and those who did not (95% both, p=1). After a median follow-up of 77 months (95% CI, 70-84 months), 119 patients progressed/died, median PFS was not reached and 6-year PFS was 57%. 6-year PFS rate according to statin intensity was: 48% (low), 72% (medium), 57% (high). PFS. 6-year PFS rate was 64% for hydrophilic and 72% for lipophilic statins. Patients treated with statins had a trend for longer PFS (p=0.06), significantly longer for patients receiving medium potency statins (p=0.04). No significant difference in PFS was observed when comparing patients treated with lipophilic statins to all others (not reached vs 84 months, p=0.22). To confirm these clinical data, in-vitro and in-vivo studies were performed. Six cell lines were tested: 4 with high cholesterol content (SUDHL4, HBL1, HT, and U2932; 5.0-8.0 µg/mg protein), and 2 with low cholesterol content (DOHH2 and OCI-LY19; 1.5-2.0 µg/mg protein); the latter showed the highest sensitivity to DXR-mediated killing. The combination of lovastatin and DXR (10nM) was tested in all 4 cell lines with high cholesterol content, resulting in more cell death than either treatment alone. Lovastatin (at the nanomolar range) resensitized DXR-resistant SUDHL4 cells to DXR. Finally, in a DXR-resistant PDX model, the combination of lovastatin and DXR resulted in delayed tumor growth as compared to chemotherapy alone. Conclusions: Use of medium potency statins is associated with improved outcomes after frontline RCHOP in patients with DLBCL. This was further confirmed in functional in-vitro and in-vivo studies. Future interventional studies, aimed at improving outcomes in these patients using this novel combination, are warranted. Disclosures Westin: Amgen: Consultancy; 47: Research Funding; Kite: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Morphosys: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Curis: Consultancy, Research Funding; Astra Zeneca: Consultancy, Research Funding. Nastoupil:Gamida Cell: Honoraria; Merck: Research Funding; TG Therapeutics: Honoraria, Research Funding; Karus Therapeutics: Research Funding; Janssen: Honoraria, Research Funding; LAM Therapeutics: Research Funding; Novartis: Honoraria, Research Funding; Bayer: Honoraria; Celgene: Honoraria, Research Funding; Genentech, Inc.: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Gilead/KITE: Honoraria. Neelapu:Bristol-Myers Squibb: Other: personal fees, Research Funding; Merck: Other: personal fees, Research Funding; Kite, a Gilead Company: Other: personal fees, Research Funding; Pfizer: Other: personal fees; Celgene: Other: personal fees, Research Funding; Novartis: Other: personal fees; Karus Therapeutics: Research Funding; N/A: Other; Takeda Pharmaceuticals: Patents & Royalties; Acerta: Research Funding; Cellectis: Research Funding; Poseida: Research Funding; Precision Biosciences: Other: personal fees, Research Funding; Legend Biotech: Other; Adicet Bio: Other; Allogene Therapeutics: Other: personal fees, Research Funding; Cell Medica/Kuur: Other: personal fees; Calibr: Other; Incyte: Other: personal fees; Unum Therapeutics: Other, Research Funding. Landgraf:NCI/NIH: Research Funding. Vega:NCI: Research Funding
An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome
Inflammasomes are innate immune sensors that respond to pathogen and damage-associated signals with caspase-1 activation, IL-1β and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the Cryopyrin Associated Periodic Syndromes (CAPS) and trigger spontaneous inflammasome activation and IL-1β oversecretion, led to successful treatment with IL-1 blocking agents(1). Herein, we report a de novo missense mutation, c.1009A>T, p.Thr337Ser, in the nucleotide-binding domain of inflammasome component NLRC4 (IPAF/CARD12) that causes early-onset recurrent fever flares and Macrophage Activation Syndrome (MAS). Functional analyses demonstrated spontaneous inflammasome formation and production of the inflammasome-dependent cytokines IL-1β and IL-18, the latter exceeding levels in CAPS. The NLRC4 mutation caused constitutive caspase-1 cleavage in transduced cells and increased production of IL-18 by both patient and NLRC4 mutant macrophages. Thus, we describe a novel monoallelic inflammasome defect that expands the monogenic autoinflammatory disease spectrum to include MAS and suggests novel targets for therapy