876 research outputs found

    3D-reconstruction of gamma-ray showers with a stereoscopic system

    No full text
    We report on a new 3D-reconstruction of Îł\gamma-ray showers which takes full advantage of the assets of a stereoscopic system of atmospheric Cherenkov telescopes and of the fine-grain imaging. The rich information collected by the cameras allows us to discriminate Îł\gamma-ray showers and hadronic showers on the basis of two simple properties of electromagnetic showers : their rotational symmetry with respect to the axis and their relatively small lateral spread. The performance of the method is presented in terms of Îł\gamma-ray efficiency, angular resolution and spectral resolution

    Acceleration of cosmic rays at supernova remnant shocks: constraints from gamma-ray observations

    Full text link
    In the past few years, gamma-ray astronomy has entered a golden age. At TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes has increased this number to more than one hundred. At GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first 2 years of operation. The recent detection and unprecedented morphological studies of gamma-ray emission from shell-type supernova remnants is of great interest, as these analyses are directly linked to the long standing issue of the origin of the cosmic-rays. However, these detections still do not constitute a conclusive proof that supernova remnants accelerate the bulk of Galactic cosmic-rays, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma-ray emission. In this talk, I will review the most relevant cosmic ray related results of gamma ray astronomy concerning supernova remnants.Comment: Proceedings of the ICATPP conference 2001, Villa Olmo (Italy), 9 pages, 2 figure

    Fermi Detection of the Pulsar Wind Nebula HESS J1640-465

    Full text link
    We present observations of HESS J1640-465 with the Fermi-LAT. The source is detected with high confidence as an emitter of high-energy gamma-rays. The spectrum lacks any evidence for the characteristic cutoff associated with emission from pulsars, indicating that the emission arises primarily from the pulsar wind nebula. Broadband modeling implies an evolved nebula with a low magnetic field resulting in a high gamma-ray to X-ray flux ratio. The Fermi emission exceeds predictions of the broadband model, and has a steeper spectrum, possibly resulting from a distinct excess of low energy electrons similar to what is inferred for both the Vela X and Crab pulsar wind nebulae.Comment: 6 pages, 5 figures, accepted for publication in Ap

    Constraints on cosmic-ray efficiency in the supernova remnant RCW 86 using multi-wavelength observations

    Full text link
    Several young supernova remnants (SNRs) have recently been detected in the high-energy and very-high-energy gamma-ray domains. As exemplified by RX J1713.7-3946, the nature of this emission has been hotly debated, and direct evidence for the efficient acceleration of cosmic-ray protons at the SNR shocks still remains elusive. We analyzed more than 40 months of data acquired by the Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE gamma-rays) information about the broadband nonthermal emission from RCW 86. For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional Counter Array (PCA). Beyond the expected Galactic diffuse background, no significant gamma-ray emission in the direction of RCW 86 is detected in any of the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. In the hadronic scenario, the derived HE upper limits together with the HESS measurements in the VHE domain can only be accommodated by a spectral index Gamma <= 1.8, i.e. a value in-between the standard (test-particle) index and the asymptotic limit of theoretical particle spectra in the case of strongly modified shocks. The interpretation of the gamma-ray emission by inverse Compton scattering of high energy electrons reproduces the multi-wavelength data using a reasonable value for the average magnetic field of 15-25 muG. For these two scenarios, we assessed the level of acceleration efficiency. We discuss these results in the light of existing estimates of the magnetic field strength, the effective density and the acceleration efficiency in RCW 86.Comment: Accepted for publication in A&A; 10 pages and 4 figure

    Detecting stable massive neutral particles through particle lensing

    Full text link
    Stable massive neutral particles emitted by astrophysical sources undergo deflection under the gravitational potential of our own galaxy. The deflection angle depends on the particle velocity and therefore non-relativistic particles will be deflected more than relativistic ones. If these particles can be detected through neutrino telescopes, cosmic ray detectors or directional dark matter detectors, their arrival directions would appear aligned on the sky along the source-lens direction. On top of this deflection, the arrival direction of non-relativistic particles is displaced with respect to the relativistic counterpart also due to the relative motion of the source with respect to the observer; this induces an alignment of detections along the sky projection of the source trajectory. The final alignment will be given by a combination of the directions induced by lensing and source proper motion. We derive the deflection-velocity relation for the Milky Way halo and suggest that searching for alignments on detection maps of particle telescopes could be a way to find new particles or new astrophysical phenomena.Comment: 17 pages, 7 figures. Accepted by PR
    • …
    corecore