35 research outputs found
Sub-Microarcsecond Astrometry with SIM-Lite: A Testbed-based Performance Assessment
SIM-Lite is an astrometric interferometer being designed for
sub-microarcsecond astrometry, with a wide range of applications from searches
for Earth-analogs to determining the distribution of dark matter. SIM-Lite
measurements can be limited by random and systematic errors, as well as
astrophysical noise. In this paper we focus on instrument systematic errors and
report results from SIM-Lite's interferometer testbed. We find that, for
narrow-angle astrometry such as used for planet finding, the end-of-mission
noise floor for SIM-Lite is below 0.035 uas.Comment: 5 pages, 5 figure
Optical Design Trade Study for the Wide Field Infrared Survey Telescope [WFIRST]
The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics mission by the Astro2010 Decadal Survey incorporating the Joint Dark Energy Mission (JDEM)-Omega payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of NWNH, the WFIRST project has been working with the WFIRST science definition team (SDT) to refine mission and payload concepts. We present the driving requirements. The current interim reference mission point design, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slitless spectroscopy science channels, is consistent with the requirements, requires no technology development, and out performs the JDEM-Omega design
An experimental testbed for NEAT to demonstrate micro-pixel accuracy
NEAT is an astrometric mission proposed to ESA with the objectives of
detecting Earth-like exoplanets in the habitable zone of nearby solar-type
stars. In NEAT, one fundamental aspect is the capability to measure stellar
centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for
centroid estimation have reached a precision of about 4e-5 pixel at Nyquist
sampling. Simulations showed that a precision of 2 micro-pixels can be reached,
if intra and inter pixel quantum efficiency variations are calibrated and
corrected for by a metrology system. The European part of the NEAT consortium
is designing and building a testbed in vacuum in order to achieve 5e-6 pixel
precision for the centroid estimation. The goal is to provide a proof of
concept for the precision requirement of the NEAT spacecraft. In this paper we
give the basic relations and trade-offs that come into play for the design of a
centroid testbed and its metrology system. We detail the different conditions
necessary to reach the targeted precision, present the characteristics of our
current design and describe the present status of the demonstration.Comment: SPIE proceeding
Finite-source and finite-lens effects in astrometric microlensing
The aim of this paper is to study the astrometric trajectory of microlensing
events with an extended lens and/or source. We consider not only a dark lens
but also a luminous lens as well. We find that the discontinuous finite-lens
trajectories given by Takahashi (2003) will become continuous in the
finite-source regime. The point lens (source) approximation alone gives an
under (over)estimation of the astrometric signal when the size of the lens and
source are not negligible. While the finiteness of the source is revealed when
the lens transits the surface of the source, the finite-lens signal is most
prominent when the lens is very close to the source. Astrometric microlensing
towards the Galactic bulge, Small Magellanic Cloud and M31 are discussed, which
indicate that the finite-lens effect is beyond the detection limit of current
instruments. Nevertheless, it is possible to distinguish between self-lensing
and halo lensing through a (non-)detection of the astrometric ellipse. We also
consider the case where the lens is luminous itself, as has been observed where
a lensing event was followed up with the Hubble Space Telescope. We show that
the astrometric signal will be reduced in a luminous-lens scenario. The
physical properties of the event, such as the lens-source flux ratio, the size
of the lens and source nevertheless can be derived by fitting the astrometric
trajectory.Comment: 12 pages, 12 figures, 1 table, published in MNRA
First experimental results of very high accuracy centroiding measurements for the neat astrometric mission
NEAT is an astrometric mission proposed to ESA with the objectives of
detecting Earth-like exoplanets in the habitable zone of nearby solar-type
stars. NEAT requires the capability to measure stellar centroids at the
precision of 5e-6 pixel. Current state-of-the-art methods for centroid
estimation have reached a precision of about 2e-5 pixel at two times Nyquist
sampling, this was shown at the JPL by the VESTA experiment. A metrology system
was used to calibrate intra and inter pixel quantum efficiency variations in
order to correct pixelation errors. The European part of the NEAT consortium is
building a testbed in vacuum in order to achieve 5e-6 pixel precision for the
centroid estimation. The goal is to provide a proof of concept for the
precision requirement of the NEAT spacecraft. In this paper we present the
metrology and the pseudo stellar sources sub-systems, we present a performance
model and an error budget of the experiment and we report the present status of
the demonstration. Finally we also present our first results: the experiment
had its first light in July 2013 and a first set of data was taken in air. The
analysis of this first set of data showed that we can already measure the pixel
positions with an accuracy of about 1e-4 pixel.Comment: SPIE conference proceeding
A detector interferometric calibration experiment for high precision astrometry
Context: Exoplanet science has made staggering progress in the last two
decades, due to the relentless exploration of new detection methods and
refinement of existing ones. Yet astrometry offers a unique and untapped
potential of discovery of habitable-zone low-mass planets around all the
solar-like stars of the solar neighborhood. To fulfill this goal, astrometry
must be paired with high precision calibration of the detector.
Aims: We present a way to calibrate a detector for high accuracy astrometry.
An experimental testbed combining an astrometric simulator and an
interferometric calibration system is used to validate both the hardware needed
for the calibration and the signal processing methods. The objective is an
accuracy of 5e-6 pixel on the location of a Nyquist sampled polychromatic point
spread function.
Methods: The interferometric calibration system produced modulated Young
fringes on the detector. The Young fringes were parametrized as products of
time and space dependent functions, based on various pixel parameters. The
minimization of func- tion parameters was done iteratively, until convergence
was obtained, revealing the pixel information needed for the calibration of
astrometric measurements.
Results: The calibration system yielded the pixel positions to an accuracy
estimated at 4e-4 pixel. After including the pixel position information, an
astrometric accuracy of 6e-5 pixel was obtained, for a PSF motion over more
than five pixels. In the static mode (small jitter motion of less than 1e-3
pixel), a photon noise limited precision of 3e-5 pixel was reached
Wide-Field InfraRed Survey Telescope (WFIRST) Final Report
In December 2010, NASA created a Science Definition Team (SDT) for WFIRST,
the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010
Decadal Survey as the highest priority for a large space mission. The SDT was
chartered to work with the WFIRST Project Office at GSFC and the Program Office
at JPL to produce a Design Reference Mission (DRM) for WFIRST. Part of the
original charge was to produce an interim design reference mission by mid-2011.
That document was delivered to NASA and widely circulated within the
astronomical community. In late 2011 the Astrophysics Division augmented its
original charge, asking for two design reference missions. The first of these,
DRM1, was to be a finalized version of the interim DRM, reducing overall
mission costs where possible. The second of these, DRM2, was to identify and
eliminate capabilities that overlapped with those of NASA's James Webb Space
Telescope (henceforth JWST), ESA's Euclid mission, and the NSF's ground-based
Large Synoptic Survey Telescope (henceforth LSST), and again to reduce overall
mission cost, while staying faithful to NWNH. This report presents both DRM1
and DRM2.Comment: 102 pages, 57 figures, 17 table