43 research outputs found

    Climate Change Leads to a Reduction in Symbiotic Derived Cnidarian Biodiversity on Coral Reefs

    Get PDF
    Symbiotic relationships enable partners to thrive and survive in habitats where they would either not be as successful, or potentially not exist, without the symbiosis. The coral reef ecosystem, and its immense biodiversity, relies on the symbioses between cnidarians (e.g., scleractinian corals, octocorals, sea anemones, jellyfish) and multiple organisms including dinoflagellate algae (family Symbiodiniaceae), bivalves, crabs, shrimps, and fishes. In this review, we discuss the ramifications of whether coral reef cnidarian symbioses are obligatory, whereby at least one of the partners must be in the symbiosis in order to survive or are facultative. Furthermore, we cover the consequences of cnidarian symbioses exhibiting partner flexibility or fidelity. Fidelity, where a symbiotic partner can only engage in symbiosis with a subset of partners, may be absolute or context dependent. Current literature demonstrates that many cnidarian symbioses are highly obligative and appear to exhibit absolute fidelity. Consequently, for many coral reef cnidarian symbioses, surviving changing environmental conditions will depend on the robustness and potential plasticity of the existing host-symbiont(s) combination. If environmental conditions detrimentally affect even one component of this symbiotic consortium, it may lead to a cascade effect and the collapse of the entire symbiosis. Symbiosis is at the heart of the coral reef ecosystem, its existence, and its high biodiversity. Climate change may cause the demise of some of the cnidarian symbioses, leading to subsequent reduction in biodiversity on coral reefs

    Microbiomes of Caribbean Octocorals Vary Over Time but Are Resistant to Environmental Change

    Get PDF
    The bacterial microbiome is an essential component of many corals, although knowledge of the microbiomes in scleractinian corals far exceeds that for octocorals. This study characterized the bacterial communities present in shallow water Caribbean gorgonian octocorals over time and space, in addition to determining the bacterial assemblages in gorgonians exposed to environmental perturbations. We found that seven shallow water Caribbean gorgonian species maintained distinct microbiomes and predominantly harbored two bacterial genera, Mycoplasma and Endozoicomonas. Representatives of these taxa accounted for over 70% of the sequences recovered, made up the three most common operational taxonomic units (OTUs), and were present in most of the gorgonian species. Gorgonian species sampled in different seasons and/or in different years, exhibited significant shifts in the abundances of these bacterial OTUs, though there were few changes to overall bacterial diversity, or to the specific OTUs present. These shifts had minimal impact on the relative abundance of inferred functional proteins within the gorgonian corals. Sequences identified as Escherichia were ubiquitous in gorgonian colonies sampled from a lagoon but not in colonies sampled from a back reef. Exposure to increased temperature and/or ultraviolet radiation (UVR) or nutrient enrichment led to few significant changes in the gorgonian coral microbiomes. While there were some shifts in the abundance of the prevalent bacteria, more commonly observed was “microbial switching” between different OTUs identified within the same bacterial genus. The relative stability of gorgonian coral bacterial microbiome may potentially explain some of the resistance and resilience of Caribbean gorgonian corals against changing environmental conditions

    Spatial distribution of conspecific genotypes within chimeras of the branching coral Stylophora pistillata

    Get PDF
    Chimerism is a coalescence of conspecific genotypes. Although common in nature, fundamental knowledge, such as the spatial distribution of the genotypes within chimeras, is lacking. Hence, we investigated the spatial distribution of conspecific genotypes within the brooding coral Stylophora pistillata, a common species throughout the Indo-Pacific and Red Sea. From eight gravid colonies, we collected planula larvae that settled in aggregates, forming 2–3 partner chimeras. Coral chimeras grew in situ for up to 25 months. Nine chimeras (8 kin, 1 non-related genotypes) were sectioned into 7–17 fragments (6–26 polyps/fragment), and genotyped using eight microsatellite loci. The discrimination power of each microsatellite-locus was evaluated with 330 ‘artificial chimeras,’ made by mixing DNA from three different S. pistillata genotypes in pairwise combinations. In 68% of ‘artificial chimeras,’ the second genotype was detected if it constituted 5–30% of the chimera. Analyses of S. pistillata chimeras revealed that: (a) chimerism is a long-term state; (b) conspecifics were intermixed (not separate from one another); (c) disproportionate distribution of the conspecifics occurred; (d) cryptic chimerism (chimerism not detected via a given microsatellite) existed, alluding to the underestimation of chimerism in nature. Mixed chimerism may affect ecological/physiological outcomes for a chimera, especially in clonal organisms, and challenges the concept of individuality, affecting our understanding of the unit of selection

    Listeria monocytogenes Infection in Israel and Review of Cases Worldwide

    Get PDF
    Listeria monocytogenes, an uncommon foodborne pathogen, is increasingly recognized as a cause of life-threatening disease. A marked increase in reported cases of listeriosis during 1998 motivated a retrospective nationwide survey of the infection in Israel. From 1995 to 1999, 161 cases were identified; 70 (43%) were perinatal infections, with a fetal mortality rate of 45%. Most (74%) of the 91 nonperinatal infections involved immunocompromised patients with malignancies, chronic liver disease, chronic renal failure, or diabetes mellitus. The common clinical syndromes in these patients were primary bacteremia (47%) and meningitis (28%). The crude case-fatality rate in this group was 38%, with a higher death rate in immunocompromised patients

    Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

    Get PDF
    Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.journal articl

    Development of Gene Expression Markers of Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites

    Get PDF
    Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide

    Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

    Get PDF
    Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships

    Symbiosis and host morphological variation: Symbiodiniaceae photosynthesis in the octocoral Briareum asbestinum at ambient and elevated temperatures

    No full text
    Intra-species morphological variation may occur in sessile organisms, such as corals, living in different habitats. Conversely, the octocoral Briareum asbestinum exhibits both encrusting and upright branching morphologies at the same shallow water habitat, enabling studying physiological differences uncoupled from habitat variation due to depth or reef location. We investigated the mutualism between endosymbiotic dinoflagellate algae, Breviolum spp. (previously clade B Symbiodinium), and these B. asbestinum morphologies at ambient and elevated temperatures. Based on msh1 gene sequences, the host morphologies were genetically similar although they differed in protein content, polyp expansion behavior, and associated Breviolum (B19 for encrusting and B21 for branching B. asbestinum). Due to colony orientation, polyps in encrusting B. asbestinum experienced irradiance levels nearly three times higher than polyps in the branching morph, which probably contributed to the lower photochemical and light absorption efficiencies of the Breviolum in encrusting fragments. The light-limited portion of photosynthesis-irradiance curves and the intracellular chlorophyll concentrations, however, indicated that Breviolum in both morphologies were acclimated to similar internal irradiances. Encrusting B. asbestinum exhibited higher Breviolum density, areal chlorophyll a, and greater photosynthetic rates cm(-2) compared to branching B. asbestinum. Notably, elevated temperature did not cause bleaching in either morphology, as Breviolum and chlorophyll densities did not differ significantly from ambient temperature, although the two morphologies adjusted some of the measured parameters, indicating coping with the stressor. In the face of continued ocean warming, the high thermal tolerance of octocorals may reinforce the shift of Caribbean reefs from scleractinian coral to octocoral dominance
    corecore