16,901 research outputs found

    R-matrices and Tensor Product Graph Method

    Full text link
    A systematic method for constructing trigonometric R-matrices corresponding to the (multiplicity-free) tensor product of any two affinizable representations of a quantum algebra or superalgebra has been developed by the Brisbane group and its collaborators. This method has been referred to as the Tensor Product Graph Method. Here we describe applications of this method to untwisted and twisted quantum affine superalgebras.Comment: LaTex 7 pages. Contribution to the APCTP-Nankai Joint Symposium on "Lattice Statistics and Mathematical Physics", 8-10 October 2001, Tianjin, Chin

    Lax Operator for the Quantised Orthosymplectic Superalgebra U_q[osp(2|n)]

    Full text link
    Each quantum superalgebra is a quasi-triangular Hopf superalgebra, so contains a \textit{universal RR-matrix} in the tensor product algebra which satisfies the Yang-Baxter equation. Applying the vector representation π\pi, which acts on the vector module VV, to one side of a universal RR-matrix gives a Lax operator. In this paper a Lax operator is constructed for the CC-type quantum superalgebras Uq[osp(2n)]U_q[osp(2|n)]. This can in turn be used to find a solution to the Yang-Baxter equation acting on VVWV \otimes V \otimes W where WW is an arbitrary Uq[osp(2n)]U_q[osp(2|n)] module. The case W=VW=V is included here as an example.Comment: 15 page

    Complementary algorithms for graphs and percolation

    Full text link
    A pair of complementary algorithms are presented. One of the pair is a fast method for connecting graphs with an edge. The other is a fast method for removing edges from a graph. Both algorithms employ the same tree based graph representation and so, in concert, can arbitrarily modify any graph. Since the clusters of a percolation model may be described as simple connected graphs, an efficient Monte Carlo scheme can be constructed that uses the algorithms to sweep the occupation probability back and forth between two turning points. This approach concentrates computational sampling time within a region of interest. A high precision value of pc = 0.59274603(9) was thus obtained, by Mersenne twister, for the two dimensional square site percolation threshold.Comment: 5 pages, 3 figures, poster version presented at statphys23 (2007

    Twisting invariance of link polynomials derived from ribbon quasi-Hopf algebras

    Get PDF
    The construction of link polynomials associated with finite dimensional representations of ribbon quasi-Hopf algebras is discussed in terms of the formulation of an appropriate Markov trace. We then show that this Markov trace is invariant under twisting of the quasi-Hopf structure, which in turn implies twisting invariance of the associated link polynomials.Comment: 18 pages, LaTeX, no figure

    A class of quadratic deformations of Lie superalgebras

    Full text link
    We study certain Z_2-graded, finite-dimensional polynomial algebras of degree 2 which are a special class of deformations of Lie superalgebras, which we call quadratic Lie superalgebras. Starting from the formal definition, we discuss the generalised Jacobi relations in the context of the Koszul property, and give a proof of the PBW basis theorem. We give several concrete examples of quadratic Lie superalgebras for low dimensional cases, and discuss aspects of their structure constants for the `type I' class. We derive the equivalent of the Kac module construction for typical and atypical modules, and a related direct construction of irreducible modules due to Gould. We investigate in detail one specific case, the quadratic generalisation gl_2(n/1) of the Lie superalgebra sl(n/1). We formulate the general atypicality conditions at level 1, and present an analysis of zero-and one-step atypical modules for a certain family of Kac modules.Comment: 26pp, LaTeX. Original title: "Finite dimensional quadratic Lie superalgebras"; abstract re-worded; text clarified; 3 references added; rearrangement of minor appendices into text; new subsection 4.

    Generalised Perk--Schultz models: solutions of the Yang-Baxter equation associated with quantised orthosymplectic superalgebras

    Full text link
    The Perk--Schultz model may be expressed in terms of the solution of the Yang--Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra Uq[sl(mn)]U_q[sl(m|n)], with a multiparametric co-product action as given by Reshetikhin. Here we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras Uq[osp(mn)]U_q[osp(m|n)]. In this manner we obtain generalisations of the Perk--Schultz model.Comment: 10 pages, 2 figure

    Nonequilibrium phase transitions and tricriticality in a three-dimensional lattice system with random-field competing kinetics

    Full text link
    We study a nonequilibrium Ising model that stochastically evolves under the simultaneous operation of several spin-flip mechanisms. In other words, the local magnetic fields change sign randomly with time due to competing kinetics. This dynamics models a fast and random diffusion of disorder that takes place in dilute metallic alloys when magnetic ions diffuse. We performe Monte Carlo simulations on cubic lattices up to L=60. The system exhibits ferromagnetic and paramagnetic steady states. Our results predict first-order transitions at low temperatures and large disorder strengths, which correspond to the existence of a nonequilibrium tricritical point at finite temperature. By means of standard finite-size scaling equations, we estimate the critical exponents in the low-field region, for which our simulations uphold continuous phase transitions.Comment: 14 pages, 7 figures, accepted for publication in Phys. Rev.
    corecore