12,170 research outputs found

    Dispersion corrections in graphenic systems: a simple and effective model of binding

    Full text link
    We combine high-level theoretical and \emph{ab initio} understanding of graphite to develop a simple, parametrised force-field model of interlayer binding in graphite, including the difficult non-pairwise-additive coupled-fluctuation dispersion interactions. The model is given as a simple additive correction to standard density functional theory (DFT) calculations, of form ΔU(D)=f(D)[UvdW(D)−UDFT(D)]\Delta U(D)=f(D)[U^{vdW}(D)-U^{DFT}(D)] where DD is the interlayer distance. The functions are parametrised by matching contact properties, and long-range dispersion to known values, and the model is found to accurately match high-level \emph{ab initio} results for graphite across a wide range of DD values. We employ the correction on the difficult bigraphene binding and graphite exfoliation problems, as well as lithium intercalated graphite LiC6_6. We predict the binding energy of bigraphene to be 0.27 J/m^2, and the exfoliation energy of graphite to be 0.31 J/m^2, respectively slightly less and slightly more than the bulk layer binding energy 0.295 J/m^2/layer. Material properties of LiC6_6 are found to be essentially unchanged compared to the local density approximation. This is appropriate in view of the relative unimportance of dispersion interactions for LiC6_6 layer binding

    Does post-mining rehabilitation on the Weipa bauxite plateau restore bird habitat values?

    No full text
    Rehabilitation is seen as a key strategy for minimising biodiversity losses. Although most rehabilitation strategies aim to provide habitat for fauna, they usually focus entirely on establishing vegetation. Successful vegetation establishment, however, does not necessarily provide habitat to the same species that are threatened by habitat loss. Improved understanding of faunal response to rehabilitation is required if rehabilitation techniques are to be refined and deliver the hoped for biodiversity outcomes. This study aimed to assess to what extent post-mining rehabilitation on the Weipa bauxite plateau has restored the bird habitat values of the pre-mining native forest. Bird assemblages, vegetation, and landscape functionality were compared between: (1) Eucalyptus tetrodonta open forest reference sites representative of the pre-mining native forest; (2) two reference land units of Eucalyptus tetrodonta tall woodland that have previously been nominated as ecologically appropriate analogues for the post-mining landscapes; and (3) a chronosequence of post-mining rehabilitation sites up to 23 years old. Bird species richness and mean bird abundance increased with rehabilitation age. Bird species composition also changed and became more similar to native forest bird assemblages with increasing age. Significant differences remained, however, in mean bird abundance and composition of the bird assemblages between the oldest age class of mine rehabilitation and reference native forest land units. The mean bird species shortfall index in the oldest age class of mine rehabilitation was 63%, compared to a mean species shortfall index of 27% for pre-mining native forest sites. There were also significant differences in vegetation composition and structure between reference native forest land units and post-mining rehabilitation sites. Most importantly, the framework plant species that dominate the native vegetation community occurred at much lower densities in mine rehabilitation than in reference land units. Site detection rates of birds were strongly related to vegetation composition and structure. It is concluded that mining and post-mining rehabilitation on the Weipa bauxite plateau has so far resulted in habitat conversion rather than habitat restoration. It therefore contributes to the causes of biodiversity decline. Post-mining rehabilitation created new habitat for 18 bird species not sourced from the pre-mining native forest. It also provided partial habitat for many of the generalist native forest bird species recorded, although their presence in the landscape remained dependent on access to native forest. However, rehabilitation did not provide the habitat resources that are required by habitat specialists and foraging specialists. This study found that the native forest bird species most sensitive to habitat loss, and most in need of habitat restoration, may be the last to return to rehabilitation if they return at all. The findings of this study have implications for rehabilitation practices, biodiversity conservation on the Weipa bauxite plateau, as well as broader implications for policies that rely on the assumption that rehabilitation can offset biodiversity losses.ANU Graduate School Scholarship. Rio Tinto Aluminium Weip

    A theoretical and semiemprical correction to the long-range dispersion power law of stretched graphite

    Full text link
    In recent years intercalated and pillared graphitic systems have come under increasing scrutiny because of their potential for modern energy technologies. While traditional \emph{ab initio} methods such as the LDA give accurate geometries for graphite they are poorer at predicting physicial properties such as cohesive energies and elastic constants perpendicular to the layers because of the strong dependence on long-range dispersion forces. `Stretching' the layers via pillars or intercalation further highlights these weaknesses. We use the ideas developed by [J. F. Dobson et al, Phys. Rev. Lett. {\bf 96}, 073201 (2006)] as a starting point to show that the asymptotic C3D−3C_3 D^{-3} dependence of the cohesive energy on layer spacing DD in bigraphene is universal to all graphitic systems with evenly spaced layers. At spacings appropriate to intercalates, this differs from and begins to dominate the C4D−4C_4 D^{-4} power law for dispersion that has been widely used previously. The corrected power law (and a calculated C3C_3 coefficient) is then unsuccesfully employed in the semiempirical approach of [M. Hasegawa and K. Nishidate, Phys. Rev. B {\bf 70}, 205431 (2004)] (HN). A modified, physicially motivated semiempirical method including some C4D−4C_4 D^{-4} effects allows the HN method to be used successfully and gives an absolute increase of about 2−32-3% to the predicted cohesive energy, while still maintaining the correct C3D−3C_3 D^{-3} asymptotics
    • …
    corecore