103 research outputs found
Fatigue and Recovery Time Course After Female Soccer Matches: A Systematic Review And Meta-analysis.
BACKGROUND: This study aimed to analyze the extent of fatigue responses after female soccer matches and the ensuing recovery time course of performance, physiological, and perceptual responses. METHODS: Three databases (PubMed, Web of Science, and SPORTDiscus) were searched in October 2020 and updated in November 2021. Studies were included when participants were female soccer players, regardless of their ability level. Further, the intervention was an official soccer match with performance, physiological, or perceptual parameters collected pre- and post-match (immediately, 12 h, 24 h, 48 h, or 72 h-post). RESULTS: A total of 26 studies (n = 465 players) were included for meta-analysis. Most performance parameters showed some immediate post-match reduction (effect size [ES] = - 0.72 to - 1.80), apart from countermovement jump (CMJ; ES = - 0.04). Reduced CMJ performance occurred at 12 h (ES = - 0.38) and 24 h (ES = - 0.42) and sprint at 48 h post-match (ES = - 0.75). Inflammatory and immunological parameters responded acutely with moderate-to-large increases (ES = 0.58-2.75) immediately post-match. Creatine kinase and lactate dehydrogenase alterations persisted at 72 h post-match (ES = 3.79 and 7.46, respectively). Small-to-moderate effects were observed for increased cortisol (ES = 0.75) and reduced testosterone/cortisol ratio (ES = -0.47) immediately post-match, while negligible to small effects existed for testosterone (ES = 0.14) and estradiol (ES = 0.34). Large effects were observed for perceptual variables, with increased fatigue (ES = 1.79) and reduced vigor (ES = - 0.97) at 12 h post-match, while muscle soreness was increased immediately post (ES = 1.63) and at 24 h post-match (ES = 1.00). CONCLUSIONS: Acute fatigue exists following female soccer matches, and the performance, physiological, and perceptual parameters showed distinctive recovery timelines. Importantly, physical performance was recovered at 72 h post-match, whereas muscle damage markers were still increased at this time point. These timelines should be considered when planning training and match schedules. However, some caution should be advised given the small number of studies available on this population. REGISTRATION: The protocol for this systematic review was pre-registered on the International Prospective Register of Systematic Reviews (PROSPERO, Registration Number: CRD42021237857)
Evaluation of qPCR-Based Assays for Leprosy Diagnosis Directly in Clinical Specimens
The increased reliability and efficiency of the quantitative polymerase chain reaction (qPCR) makes it a promising tool for performing large-scale screening for infectious disease among high-risk individuals. To date, no study has evaluated the specificity and sensitivity of different qPCR assays for leprosy diagnosis using a range of clinical samples that could bias molecular results such as difficult-to-diagnose cases. In this study, qPCR assays amplifying different M. leprae gene targets, sodA, 16S rRNA, RLEP and Ag 85B were compared for leprosy differential diagnosis. qPCR assays were performed on frozen skin biopsy samples from a total of 62 patients: 21 untreated multibacillary (MB), 26 untreated paucibacillary (PB) leprosy patients, as well as 10 patients suffering from other dermatological diseases and 5 healthy donors. To develop standardized protocols and to overcome the bias resulted from using chromosome count cutoffs arbitrarily defined for different assays, decision tree classifiers were used to estimate optimum cutoffs and to evaluate the assays. As a result, we found a decreasing sensitivity for Ag 85B (66.1%), 16S rRNA (62.9%), and sodA (59.7%) optimized assay classifiers, but with similar maximum specificity for leprosy diagnosis. Conversely, the RLEP assay showed to be the most sensitive (87.1%). Moreover, RLEP assay was positive for 3 samples of patients originally not diagnosed as having leprosy, but these patients developed leprosy 5–10 years after the collection of the biopsy. In addition, 4 other samples of patients clinically classified as non-leprosy presented detectable chromosome counts in their samples by the RLEP assay suggesting that those patients either had leprosy that was misdiagnosed or a subclinical state of leprosy. Overall, these results are encouraging and suggest that RLEP assay could be useful as a sensitive diagnostic test to detect M. leprae infection before major clinical manifestations
Gene expression of bacterial collagenolytic proteases in root caries
Objective: It is unknown whether bacteria play a role in the collagen matrix degradation that occurs during caries progression. Our aim was to characterize the expression level of genes involved in bacterial collagenolytic proteases in root biofilms with and without caries. Method: we collected samples from active cavitated root caries lesions (RC, n = 30) and from sound root surfaces (SRS, n = 10). Total microbial RNA was isolated and cDNA sequenced on the Illumina Hi-Seq2500. Reads were mapped to 162 oral bacterial reference genomes. Genes encoding putative bacterial collagenolytic proteases were identified. Normalization and differential expression analysis was performed on all metatranscriptomes (FDR8) but none in SRS were Pseudoramibacter alactolyticus [HMPREF0721_RS02020; HMPREF0721_RS04640], Scardovia inopinata [SCIP_RS02440] and Olsenella uli DSM7084 [OLSU_RS02990]. Conclusion: Our findings suggest that the U32 proteases may be related to carious dentine. The contribution of a small number of species to dentine degradation should be further investigated. These proteases may have potential in future biotechnological and medical applications, serving as targets for the development of therapeutic agents
Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains
Ruiz JC, D'Afonseca V, Silva A, et al. Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains. PLoS ONE. 2011;6(4): e18551.Background: Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829
- …