6 research outputs found

    Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger

    Get PDF
    Endoplasmic reticulum associated degradation (ERAD) is a conserved mechanism to remove misfolded proteins from the ER by targeting them to the proteasome for degradation. To assess the role of ERAD in filamentous fungi, we have examined the consequences of disrupting putative ERAD components in the filamentous fungus Aspergillus niger. Deletion of derA, doaA, hrdC, mifA, or mnsA in A. niger yields viable strains, and with the exception of doaA, no significant growth phenotype is observed when compared to the parental strain. The gene deletion mutants were also made in A. niger strains containing single- or multicopies of a glucoamylase–glucuronidase (GlaGus) gene fusion. The induction of the unfolded protein response (UPR) target genes (bipA and pdiA) was dependent on the copy number of the heterologous gene and the ERAD gene deleted. The highest induction of UPR target genes was observed in ERAD mutants containing multiple copies of the GlaGus gene. Western blot analysis revealed that deletion of the derA gene in the multicopy GlaGus overexpressing strain resulted in a 6-fold increase in the intracellular amount of GlaGus protein detected. Our results suggest that impairing some components of the ERAD pathway in combination with high expression levels of the heterologous protein results in higher intracellular protein levels, indicating a delay in protein degradation

    Analysis of heterologous protein production in defined recombinant Aspergillus awamori strains.

    No full text
    A study was carried out to obtain more insight into the parameters that determine the secretion of heterologous proteins from filamentous fungi. A strategy was chosen in which the mRNA levels and protein levels of a number of heterologous genes of different origins were compared. All genes were under control of the Aspergillus awamori 1,4-beta-endoxylanase A (exlA) expression signals and were integrated in a single copy at the A. awamori pyrG locus. A Northern (RNA) analysis showed that large differences occurred in the steady-state mRNA levels obtained with the various genes; those levels varied from high values for genes of fungal origin (A. awamori 1,4-beta-endoxylanase A, Aspergillus niger glucoamylase, and Thermomyces lanuginosa lipase) to low values for genes of nonfungal origin (human interleukin 6 and Cyamopsis tetragonoloba [guar] alpha-galactosidase). With the C. tetragonoloba alpha-galactosidase wild-type gene full-length mRNA was even undetectable. Surprisingly, small amounts of full-length mRNA could be detected when a C. tetragonoloba alpha-galactosidase gene with an optimized Saccharomyces cerevisiae codon preference was expressed. In all cases except human interleukin 6, the protein levels corresponded to the amounts expected on basis of the mRNA levels. For human interleukin 6, very low protein levels were observed, whereas relatively high steady-state mRNA levels were obtained. Our data suggest that intracellular protein degradation is the most likely explanation for the low levels of secreted human interleukin 6

    Recombinant protein expression in biofilms

    No full text
    corecore