2,455 research outputs found
Evolutionary implications of a high selfing rate in the freshwater snail Lymnaea truncatula.
Self-compatible hermaphroditic organisms that mix self-fertilization and outcrossing are of great interest for investigating the evolution of mating systems. We investigate the evolution of selfing in Lymnaea truncatula, a self-compatible hermaphroditic freshwater snail. We first analyze the consequences of selfing in terms of genetic variability within and among populations and then investigate how these consequences along with the species ecology (harshness of the habitat and parasitism) might govern the evolution of selfing. Snails from 13 localities (classified as temporary or permanent depending on their water availability) were sampled in western Switzerland and genotyped for seven microsatellite loci. F(IS) (estimated on adults) and progeny array analyses (on hatchlings) provided similar selfing rate estimates of 80%. Populations presented a low polymorphism and were highly differentiated (F(ST) = 0.58). Although the reproductive assurance hypothesis would predict higher selfing rate in temporary populations, no difference in selfing level was observed between temporary and permanent populations. However, allelic richness and gene diversity declined in temporary habitats, presumably reflecting drift. Infection levels varied but were not simply related to either estimated population selfing rate or to differences in heterozygosity. These findings and the similar selfing rates estimated for hatchlings and adults suggest that within-population inbreeding depression is low in L. truncatula
Cost effectiveness of a community based prevention and treatment of acute malnutrition programme in Mumbai slums, India
Children in slums are at high risk of acute malnutrition and death. Cost-effectiveness of community-based management of severe acute malnutrition programmes has been demonstrated previously, but there is limited evidence in the context of urban slums where programme cost structure is likely to vary tremendously.
This study assessed the cost-utility of adding a community based prevention and treatment for acute malnutrition intervention to Government of India Integrated Child Development Services (ICDS) standard care for children in Mumbai slums. The intervention is delivered by community health workers in collaboration with ICDS Anganwadi community health workers. The analysis used a decision tree model to compare the costs and effects of the two options: standard ICDS services with the intervention and prevention versus standard ICDS services alone. The model used outcome and cost data from the Society for Nutrition, Education & Health Action's Child Health and Nutrition programme in Mumbai slums, which delivered services to 12,362 children over one year from 2013 to 2014. An activity-based cost model was used, with calculated costs based on programme financial records and key informant interviews. Cost data were coupled with programme effectiveness data to estimate disability adjusted life years (DALYs) averted.
The community based prevention and treatment programme averted 15,016 DALYs (95% Uncertainty Interval [UI]: 12,246-17,843) at an estimated cost of $23 per DALY averted (95%UI:19-28) and was thus highly cost-effective. This study shows that ICDS Anganwadi community health workers can work efficiently with community health workers to increase the prevention and treatment coverage in slums in India and can lead to policy recommendations at the state, and potentially the national level, to promote such programmes in Indian slums as a cost-effective approach to tackling moderate and severe acute malnutrition
QuantiNemo 2: a Swiss knife to simulate complex demographic and genetic scenarios, forward and backward in time.
QuantiNemo 2 is a stochastic simulation program for quantitative population genetics. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits and neutral markers in structured populations connected by migration and located in heterogeneous habitats. A specific feature is that it allows to switch between an individual-based full-featured mode and a population-based faster mode. Several demographic, genetic and selective parameters can be fine-tuned in QuantiNemo 2: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography and mating system are the main features.
QuantiNemo 2 is a C++ program with a source code available under the GNU General Public License version 3. Executables are provided for Windows, MacOS and Linux platforms, together with a comprehensive manual and tutorials illustrating its flexibility. The executable, manual and tutorial can be found on the website www2.unil.ch/popgen/softwares/quantinemo/, while the source code and user support are given through GitHub: github.com/jgx65/quantinemo.
Supplementary data are available at Bioinformatics online
Cirsium species show disparity in patterns of genetic variation at their range-edge, despite similar patterns of reproduction and isolation
Genetic variation was assessed across the UK geographical range of Cirsium acaule and Cirsium heterophyllum. A decline in genetic diversity and increase in population divergence approaching the range edge of these species was predicted based on parallel declines in population density and seed production reported seperately. Patterns were compared with UK populations of the widespread Cirsium arvense.Populations were sampled along a latitudinal transect in the UK and genetic variation
assessed using microsatellite markers. Cirsium acaule
shows strong isolation by distance, a significant decline in diversity and an increase in divergence among range-edge populations. Geographical structure is also evident in
C. arvense, whereas no such patterns are seen in C.heterophyllum. There is a major disparity between patterns of genetic variation in C. acaule and
C. heterophyllum despite very similar patterns in seed production and population isolation in these species. This suggests it may be misleading to make assumptions
about the geographical structure of genetic variation within species based solely on the present-day reproduction and distribution of populations
The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean.
Uncovering the genetic basis of phenotypic variation and the population history under which it established is key to understand the trajectories along which local adaptation evolves. Here, we investigated the genetic basis and evolutionary history of a clinal plumage color polymorphism in European barn owls (Tyto alba). Our results suggest that barn owls colonized the Western Palearctic in a ring-like manner around the Mediterranean and meet in secondary contact in Greece. Rufous coloration appears to be linked to a recently evolved nonsynonymous-derived variant of the melanocortin 1 receptor (MC1R) gene, which according to quantitative genetic analyses evolved under local adaptation during or following the colonization of Central Europe. Admixture patterns and linkage disequilibrium between the neutral genetic background and color found exclusively within the secondary contact zone suggest limited introgression at secondary contact. These results from a system reminiscent of ring species provide a striking example of how local adaptation can evolve from derived genetic variation
Differential Expression and Localization of Glycosidic Residues in In Vitro and In Vivo Matured Cumulus-Oocyte Complexes in Equine and Porcine Species
Glycoprotein oligosaccharides play major roles during reproduction, yet their function in gamete interactions is not fully elucidated. Identification and comparison of the glycan pattern in cumulus-oocyte complexes (COCs) from species with different efficiencies of in vitro spermatozoa penetration through the zona pellucida (ZP) could help clarify how oligosaccharides affect gamete interactions. We compared the expression and localization of 12 glycosidic residues in equine and porcine in vitro-matured (IVM) and preovulatory COCs by means of lectin histochemistry. The COCs glycan pattern differed between animals and COC source (IVM versus preovulatory). Among the 12 carbohydrate residues investigated, the IVM COCs from these two species shared: (a) sialo- and bN-acetylgalactosamine (GalNAc)-termi- nating glycans in the ZP; (b) sialylated and fucosylated glycans in cumulus cells; and (c) GalNAc and N-acetylglucosamine (GlcNAc) glycans in the ooplasm. Differences in the preovulatory COCs of the two species included: (a) sialoglycans and GlcNAc terminating glycans in the equine ZP versus terminal GalNAc and internal GlcNAc in the porcine ZP; (b) terminal galactosides in equine cumulus cells versus terminal GlcNAc and fucose in porcine cohorts; and (c) fucose in the mare ooplasm versus lactosamine and internal GlcNAc in porcine oocyte cytoplasm. Furthermore, equine and porcine cumulus cells and oocytes contributed differently to the synthesis of ZP glycoproteins. These results could be attributed to the different in vitro fertilization efficiencies between these two divergent, large-animal models
Evolutionary aspects of population structure for molecular and quantitative traits in the freshwater snail Radix balthica.
Detecting the action of selection in natural populations can be achieved using the QST-FST comparison that relies on the estimation of FST with neutral markers, and QST using quantitative traits potentially under selection. QST higher than FST suggests the action of directional selection and thus potential local adaptation. In this article, we apply the QST-FST comparison to four populations of the hermaphroditic freshwater snail Radix balthica located in a floodplain habitat. In contrast to most studies published so far, we did not detect evidence of directional selection for local optima for any of the traits we measured: QST calculated using three different methods was never higher than FST. A strong inbreeding depression was also detected, indicating that outcrossing is probably predominant over selfing in the studied populations. Our results suggest that in this floodplain habitat, local adaptation of R. balthica populations may be hindered by genetic drift, and possibly altered by uneven gene flow linked to flood frequency
Characterization of microsatellite markers in the tsetse fly, Glossina pallidipes
Glossina pallidipes is a vector of African trypanosomiasis. Here we characterize eight new polymorphic microsatellite loci in 288 G. pallidipes sampled from 12 Kenya populations. The number of alleles per locus ranged from four to 36 with a mean of 20.5 ± 10.1. Expected single locus heterozygosities varied from 0.044 to 0.829. Heterozygosity averaged 0.616 ± 0.246. No linkage disequilibrium was found. We also report results in eight other tsetse species estimated by using the primers developed in G. pallidipes. The primers worked best in G. swynnertoni and G. austeni and worst in G. m. morsitans and G. m. submorsitans
Cost effectiveness of a community based prevention and treatment of acute malnutrition programme in Mumbai slums, India
Children in slums are at high risk of acute malnutrition and death. Cost-effectiveness of community-based management of severe acute malnutrition programmes has been demonstrated previously, but there is limited evidence in the context of urban slums where programme cost structure is likely to vary tremendously. This study assessed the cost-utility of adding a community based prevention and treatment for acute malnutrition intervention to Government of India Integrated Child Development Services (ICDS) standard care for children in Mumbai slums. The intervention is delivered by community health workers in collaboration with ICDS Anganwadi community health workers. The analysis used a decision tree model to compare the costs and effects of the two options: standard ICDS services with the intervention and prevention versus standard ICDS services alone. The model used outcome and cost data from the Society for Nutrition, Education & Health Action’s Child Health and Nutrition programme in Mumbai slums, which delivered services to 12,362 children over one year from 2013 to 2014. An activity-based cost model was used, with calculated costs based on programme financial records and key informant interviews. Cost data were coupled with programme effectiveness data to estimate disability adjusted life years (DALYs) averted. The community based prevention and treatment programme averted 15,016 DALYs (95% Uncertainty Interval [UI]: 12,246–17,843) at an estimated cost of $23 per DALY averted (95%UI:19–28) and was thus highly cost-effective. This study shows that ICDS Anganwadi community health workers can work efficiently with community health workers to increase the prevention and treatment coverage in slums in India and can lead to policy recommendations at the state, and potentially the national level, to promote such programmes in Indian slums as a cost-effective approach to tackling moderate and severe acute malnutrition
Comparative population structure of <i>Plasmodium malariae</i> and <i>Plasmodium falciparum</i> under different transmission settings in Malawi
<b>Background:</b> Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures.
<BR/>
<b>Methods:</b> Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI), population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters.
<BR/>
<b>Results:</b> Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008) and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11) and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission setting.
<BR/>
<b>Conclusions:</b> The extent of similarity between P. falciparum and P. malariae population structure described by the high level of multiple infection, the lack of significant population differentiation or haplotype clustering and lack of linkage disequilibrium is surprising given the differences in the biological features of these species that suggest a reduced potential for out-crossing and transmission in P. malariae. The absence of a rise in P. malariae MOI with increased transmission or a reduction in MOI with age could be explained by differences in the duration of infection or degree of immunity compared to P. falciparum
- …