25 research outputs found

    First experimental investigation of dual reciprocating drilling in planetary regoliths : proposition of penetration mechanics

    No full text
    International audienceThe search for life in the solar system requires sub-surface exploration capabilities of extra-terrestrial bodies like the Moon and Mars. To do so different techniques are being developed: from the classical rotary drilling techniques widely used on Earth to more original techniques like ultrasonic drilling. Dual-reciprocating drilling (DRD) is a bio-mimetic drilling principle inspired by the manner wood-wasps drill into wood to lay its eggs. It was proposed as an efficient extra-terrestrial drilling technique requiring low over-head force. To deepen the understanding of this novel drilling technique, DRD has been tested for the first time in planetary regolith simulants. These experiments are reported here. To do so a new test bench was built and is presented. The soil forces on the drill bit are analysed and the final depth reached by the DRD system is compared to the final depth reached by static penetration. The experiments have shown very high levels of slippage (defined here specifically for DRD). The observations of the surface deformations and the importance of slippage lead to the proposal of DRD penetration mechanics in regoliths. Finally a re-evaluation of previous DRD experiments conducted on low compressive strength rocks also show the high levels of slippage during DRD

    Experimental study of dual-reciprocating-drilling mechanism using design of experiment approach

    No full text
    Y. Gao et al. proved the feasibility of designing a woodwasp (Sirex Noctilio) inspired drill for Earth and extraterrestrial drilling and boring activities [1]. But before an optimised dual reciprocating drill design can be proposed, it is necessary to better understand the driving factors and the important parameters that influence this mechanism’s performance and, power and force requirements. Indeed the insect’s ovipositor is "optimised", through natural selection, for wood; but the dual reciprocating drill will bore into much different substrates. Here, the numerous parameters that could influence the studied mechanism’s performance are identified and the test bench t

    Experimental Study of dual-reciprocating-drilling Mechanism using Design of Experiment Approach

    No full text
    International audienceExperimental Study of dual-reciprocating-drilling Mechanism using Design of Experiment Approach

    Experimental Study of dual-reciprocating-drilling Mechanism using Design of Experiment Approach

    Get PDF
    International audienceExperimental Study of dual-reciprocating-drilling Mechanism using Design of Experiment Approach
    corecore