378 research outputs found

    Magnetic relaxation in hard type-II superconductors

    Full text link
    Magnetic relaxation in a type-II superconductor is simulated for a range of temperatures (T) in a simple model of 2D Josephson junction array (JJA) with finite screening. The high-T phase, that is characterised by a single time scale \tau_{\alpha}, crosses over to an intermediate phase at a lower temperature T_{cr} wherein a second time scale \tau_{\beta}<<\tau_{\alpha} emerges. The relaxation in the time window set by \tau_{\beta} follows power law which is attributed to self-organization of the magnetic flux during relaxation. Consequently, for T<T_{cr}, a transition from super-critical (current density J>J_{c}) to sub-critical (J<J_{c}) state separated by an intermediate state with frozen dynamics is observed. Both \tau_{\alpha} and \tau_{\beta} diverges at T_{sc}<T_{cr}, marking the transition into a state with true persistent current.Comment: 7 Pages (in Europhys format, .sty included), 5 Figures. To appear in Europhysics Letter

    Glass transition in models with controlled frustration

    Full text link
    A class of models with self-generated disorder and controlled frustration is studied. Between the trivial case, where frustration is not present at all, and the limit case, where frustration is present over every length scale, a region with local frustration is found where glassy dynamics appears. We suggest that in this region, the mean field model might undergo a p-spin like transition, and increasing the range of frustration, a crossover from a 1-step replica symmetry breaking to a continuous one might be observed.Comment: 4 pages, 6 figure

    On the rigidity of a hard sphere glass near random close packing

    Full text link
    We study theoretically and numerically the microscopic cause of the mechanical stability of hard sphere glasses near their maximum packing. We show that, after coarse-graining over time, the hard sphere interaction can be described by an effective potential which is exactly logarithmic at the random close packing ϕc\phi_c. This allows to define normal modes, and to apply recent results valid for elastic networks: mechanical stability is a non-local property of the packing geometry, and is characterized by some length scale l∗l^* which diverges at ϕc\phi_c [1, 2]. We compute the scaling of the bulk and shear moduli near ϕc\phi_c, and speculate on the possible implications of these results for the glass transition.Comment: 7 pages, 4 figures. Figure 4 had a wrong unit in abscissa, which was correcte

    Jamming transition in granular media: A mean field approximation and numerical simulations

    Full text link
    In order to study analytically the nature of the jamming transition in granular material, we have considered a cavity method mean field theory, in the framework of a statistical mechanics approach, based on Edwards' original idea. For simplicity we have applied the theory to a lattice model and a transition with exactly the same nature of the glass transition in mean field models for usual glass formers is found. The model is also simulated in three dimensions under tap dynamics and a jamming transition with glassy features is observed. In particular two step decays appear in the relaxation functions and dynamic heterogeneities resembling ones usually observed in glassy systems. These results confirm early speculations about the connection between the jamming transition in granular media and the glass transition in usual glass formers, giving moreover a precise interpretation of its nature.Comment: 11 pages, 12 figure

    Glass transition in the quenched and annealed version of the frustrated lattice gas model

    Full text link
    In this paper we study the 3d frustrated lattice gas model in the annealed version, where the disorder is allowed to evolve in time with a suitable kinetic constraint. Although the model does not exhibit any thermodynamic transition it shows a diverging peak at some characteristic time in the dynamical non-linear susceptibility, similar to the results on the p-spin model in mean field and Lennard-Jones mixture recently found by Donati et al. [cond-mat/9905433]. Comparing these results to those obtained in the model with quenched interactions, we conclude that the critical behavior of the dynamical susceptibility is reminiscent of the thermodynamic transition present in the quenched model, and signaled by the divergence of the static non-linear susceptibility, suggesting therefore a similar mechanism also in supercooled glass-forming liquids.Comment: 8 pages, 14 figure

    Thermodynamic Comparison and the Ideal Glass Transition of A Monatomic Systems Modeled as an Antiferromagnetic Ising Model on Husimi and Cubic Recursive Lattices of the Same Coordination Number

    Full text link
    Two kinds of recursive lattices with the same coordination number but different unit cells (2-D square and 3-D cube) are constructed and the antiferromagnetic Ising model is solved exactly on them to study the stable and metastable states. The Ising model with multi-particle interactions is designed to represent a monatomic system or an alloy. Two solutions of the model exhibit the crystallization of liquid, and the ideal glass transition of supercooled liquid respectively. Based on the solutions, the thermodynamics on both lattices was examined. In particular, the free energy, energy, and entropy of the ideal glass, supercooled liquid, crystal, and liquid state of the model on each lattice were calculated and compared with each other. Interactions between particles farther away than the nearest neighbor distance are taken into consideration. The two lattices show comparable properties on the transition temperatures and the thermodynamic behaviors, which proves that both of them are practical to describe the regular 3-D case, while the different effects of the unit types are still obvious.Comment: 27 pages, 13 figure

    Phase diagram of glassy systems in an external field

    Full text link
    We study the mean-field phase diagram of glassy systems in a field pointing in the direction of a metastable state. We find competition among a ``magnetized'' and a ``disordered'' phase, that are separated by a coexistence line as in ordinary first order phase transitions. The coexistence line terminates in a critical point, which in principle can be observed in numerical simulations of glassy models.Comment: 4 pages, 5 figure

    DYNAMICAL SOLUTION OF A MODEL WITHOUT ENERGY BARRIERS

    Full text link
    In this note we study the dynamics of a model recently introduced by one of us, that displays glassy phenomena in absence of energy barriers. Using an adiabatic hypothesis we derive an equation for the evolution of the energy as a function of time that describes extremely well the glassy behaviour observed in Monte Carlo simulations.Comment: 11 pages, LaTeX, 3 uuencoded figure

    Glasslike Arrest in Spinodal Decomposition as a Route to Colloidal Gelation

    Get PDF
    Colloid-polymer mixtures can undergo spinodal decomposition into colloid-rich and colloid-poor regions. Gelation results when interconnected colloid-rich regions solidify. We show that this occurs when these regions undergo a glass transition, leading to dynamic arrest of the spinodal decomposition. The characteristic length scale of the gel decreases with increasing quench depth, and the nonergodicity parameter exhibits a pronounced dependence on scattering vector. Mode coupling theory gives a good description of the dynamics, provided we use the full static structure as input.Comment: 14 pages, 4 figures; replaced with published versio
    • …
    corecore