1,263 research outputs found

    GRB 140206A: the most distant polarized Gamma-Ray Burst

    Full text link
    The nature of the prompt gamma-ray emission of Gamma-Ray Bursts (GRBs) is still far from being completely elucidated. The measure of linear polarization is a powerful tool that can be used to put further constraints on the content and magnetization of the GRB relativistic outflows, as well as on the radiation processes at work. To date only a handful of polarization measurements are available for the prompt emission of GRBs. Here we present the analysis of the prompt emission of GRB 140206A, obtained with INTEGRAL/IBIS, Swift/BAT, and Fermi/GBM. Using INTEGRAL/IBIS as a Compton polarimeter we were able to constrain the linear polarization level of the second peak of this GRB as being larger than 28% at 90% c.l. We also present the GRB afterglow optical spectroscopy obtained at the Telescopio Nazionale Galileo (TNG), which allowed us the measure the distance of this GRB, z=2.739. This distance value together with the polarization measure obtained with IBIS, allowed us to derive the deepest and most reliable limit to date (xi <1x10-16) on the possibility of Lorentz Invariance Violation, measured through the vacuum birefringence effect on a cosmological source.Comment: 9 pages, 5 figures, 3 tables, accepted for publication in MNRAS. arXiv admin note: text overlap with arXiv:1303.418

    GRB Observed by IBIS/PICsIT in the MeV Energy Range

    Full text link
    We present the preliminary results of a systematic search for GRB and other transients in the publicly available data for the IBIS/PICsIT (0.2-10 MeV) detector on board INTEGRAL. Lightcurves in 2-8 energy bands with time resolution from 1 to 62.5 ms have been collected and an analysis of spectral and temporal characteristics has been performed. This is the nucleus of a forthcoming first catalog of GRB observed by PICsIT.Comment: 6 pages, 3 figures. Poster presented at COSPAR 2008. Advaces in Space Research, accepted for publicatio

    In-flight calibration of the INTEGRAL/IBIS mask

    Full text link
    Since the release of the INTEGRAL Offline Scientific Analysis (OSA) software version 9.0, the ghost busters module has been introduced in the INTEGRAL/IBIS imaging procedure, leading to an improvement of the sensitivity around bright sources up to a factor of 7. This module excludes in the deconvolution process the IBIS/ISGRI detector pixels corresponding to the projection of a bright source through mask elements affected by some defects. These defects are most likely associated with screws and glue fixing the IBIS mask to its support. Following these major improvements introduced in OSA 9, a second order correction is still required to further remove the residual noise, now at a level of 0.2-1% of the brightest source in the field of view. In order to improve our knowledge of the IBIS mask transparency, a calibration campaign has been carried out during 2010-2012. We present here the analysis of these data, together with archival observations of the Crab and Cyg X-1, that allowed us to build a composite image of the mask defects and to investigate the origin of the residual noise in the IBIS/ISGRI images. Thanks to this study, we were able to point out a simple modification of the ISGRI analysis software that allows to significantly improve the quality of the images in which bright sources are detected at the edge of the field of view. Moreover, a refinement of the area excluded by the ghost busters module is considered, and preliminary results show improvements to be further tested. Finally, this study indicates further directions to be investigated for improving the ISGRI sensitivity, such as taking into account the thickness of the screws in the mask model or studying the possible discrepancy between the modeled and actual mask element bridges.Comment: accepted for publication in the proceedings of "An INTEGRAL view of the high-energy sky (the first 10 years)" 9th INTEGRAL Workshop, October 15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds. A. Goldwurm, F. Lebrun and C. Winkler, (http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176), id 154; 6 pages, 4 figures, see the PoS website for the full resolution versio

    The Microchannel X-ray Telescope on Board the SVOM Satellite

    Full text link
    We present the Micro-channel X-ray Telescope (MXT), a new narrow-field (about 1{\deg}) telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science, scheduled for launch in 2021. MXT is based on square micro pore optics (MPOs), coupled with a low noise CCD. The optics are based on a "Lobster Eye" design, while the CCD is a focal plane detector similar to the type developed for the seven eROSITA telescopes. MXT is a compact and light (<35 kg) telescope with a 1 m focal length, and it will provide an effective area of about 45 cmsq on axis at 1 keV. The MXT PSF is expected to be better than 4.2 arc min (FWHM) ensuring a localization accuracy of the afterglows of the SVOM GRBs to better than 1 arc min (90\% c.l. with no systematics) provided MXT data are collected within 5 minutes after the trigger. The MXT sensitivity will be adequate to detect the afterglows for almost all the SVOM GRBs as well as to perform observations of non-GRB astrophysical objects. These performances are fully adapted to the SVOM science goals, and prove that small and light telescopes can be used for future small X-ray missions.Comment: 6 pages, 6 figures, proceedings of the conference "Swift: 10 years of Discovery", Rome, December 2-5, 2014. To be published by Po

    The 3rd IBIS/ISGRI soft gamma-ray survey catalog

    Get PDF
    In this paper we report on the third soft gamma-ray source catalog obtained with the IBIS/ISGRI gamma-ray imager on board the INTEGRAL satellite. The scientific dataset is based on more than 40 Ms of high quality observations performed during the first three and a half years of Core Program and public IBIS/ISGRI observations. Compared to previous IBIS/ISGRI surveys, this catalog includes a substantially increased coverage of extragalactic fields, and comprises more than 400 high-energy sources detected in the energy range 17-100 keV, including both transients and faint persistent objects which can only be revealed with longer exposure times.Comment: Accepted for publication in ApJ Suppl.; 11 pages; 4 figures Minor changes to conten

    Hard X-ray variability of Magnetar's Tails observed with INTEGRAL

    Full text link
    Magnetar's persistent emission above 10 keV was recently discovered thanks to the imaging capabilities of the IBIS coded mask telescope on board the INTEGRAL satellite. The only two sources that show some degree of long term variability are SGR 1806-20 and 1RXS J170849.0-400910. We find some indications that variability of these hard tails could be the driver of the spectral variability measured in these sources below 10 keV. In addition we report for the first time the detection at 2.8 sigma level of pulsations in the hard X-ray tail of SGR 1806-20.Comment: 3 pages, 3 figures, proceedings of the conference "40 Years of Pulsars, Millisecond Pulsars, Magnetars and More", Montreal, August 12-17 2007. To be published by AIP

    Factorizable ribbon quantum groups in logarithmic conformal field theories

    Full text link
    We review the properties of quantum groups occurring as Kazhdan--Lusztig dual to logarithmic conformal field theory models. These quantum groups at even roots of unity are not quasitriangular but are factorizable and have a ribbon structure; the modular group representation on their center coincides with the representation on generalized characters of the chiral algebra in logarithmic conformal field models.Comment: 27pp., amsart++, xy. v2: references added, some other minor addition

    Secret Symmetries in AdS/CFT

    Get PDF
    We discuss special quantum group (secret) symmetries of the integrable system associated to the AdS/CFT correspondence. These symmetries have by now been observed in a variety of forms, including the spectral problem, the boundary scattering problem, n-point amplitudes, the pure-spinor formulation and quantum affine deformations.Comment: 20 pages, pdfLaTeX; Submitted to the Proceedings of the Nordita program `Exact Results in Gauge-String Dualities'; Based on the talk presented by A.T., Nordita, 15 February 201

    Does the Milky Way Produce a Nuclear Galactic Wind?

    Full text link
    We detect high-velocity absorbing gas using Hubble Space Telescope and Far Ultraviolet Spectroscopic Explorer medium resolution spectroscopy along two high-latitude AGN sight lines (Mrk 1383 and PKS 2005-489) above and below the Galactic Center (GC). These absorptions are most straightforwardly interpreted as a wind emanating from the GC which does not escape from the Galaxy's gravitational potential. Spectra of four comparison B stars are used to identify and remove foreground velocity components from the absorption-line profiles of O VI, N V, C II, C III, C IV, Si II, Si III, and Si IV. Two high-velocity (HV) absorption components are detected along each AGN sight line, three redshifted and one blueshifted. Assuming that the four HV features trace a large-scale Galactic wind emanating from the GC, the blueshifted absorber is falling toward the GC at a velocity of 250 +/- 20 km/s, which can be explained by "Galactic fountain" material that originated in a bound Galactic wind. The other three absorbers represent outflowing material; the largest derived outflow velocity is +250 +/- 20 km/s, which is only 45% of the velocity necessary for the absorber to escape from its current position in the Galactic gravitational potential. All four HV absorbers are found to reach the same maximum height above the Galactic plane (|z_max| = 12 +/- 1 kpc), implying that they were all ejected from the GC with the same initial velocity. The derived metallicity limits of >10-20% Solar are lower than expected for material recently ejected from the GC unless these absorbers also contain significant amounts of hotter gas in unseen ionization stages.Comment: 39 pages, 3 figures, ApJ accepte

    GRB021125: the first GRB imaged by INTEGRAL

    Full text link
    In the late afternoon of November 25, 2002 a gamma-ray burst (GRB) was detected in the partially coded field of view (about 7.3 deg from the centre) of the imager IBIS on board the INTEGRAL satellite. The instruments on-board INTEGRAL allowed, for the first time, the observation of the prompt gamma-ray emission over a broad energy band from 15 to 500 keV. GRB021125 lasted ~24 s with a mean flux of ~5.0 photons/cm^2/s in the 20-500 keV energy band, and a fluence of 4.8x10^-5 erg/cm^2 in the same energy band. Here we report the analysis of the data from the imager IBIS and the spectrometer SPI.Comment: 4 pages, 5 figures. Accepted for publication on A&A: Special Issue on First Science with INTEGRA
    corecore