3,053 research outputs found

    All-optical steering of light via spatial Bloch oscillations in a gas of three-level atoms

    Full text link
    A standing-wave control field applied to a three-level atomic medium in a planar hollow-core photonic crystal waveguide creates periodic variations of linear and nonlinear refractive indexes of the medium. This property can be used for efficient steering of light. In this work we study, both analytically and numerically, the dynamics of probe optical beams in such structures. By properly designing the spatial dependence of the nonlinearity it is possible to induce long-living Bloch oscillations of spatial gap solitons, thus providing desirable change in direction of the beam propagation without inducing appreciable diffraction. Due to the significant enhancement of the nonlinearity, such self-focusing of the probe beam can be reached at extremely weak light intensities.Comment: 8 pages, 4 figure

    Heavy Dynamical Fermions in Lattice QCD

    Full text link
    It is expected that the only effect of heavy dynamical fermions in QCD is to renormalize the gauge coupling. We derive a simple expression for the shift in the gauge coupling induced by NfN_f flavors of heavy fermions. We compare this formula to the shift in the gauge coupling at which the confinement-deconfinement phase transition occurs (at fixed lattice size) from numerical simulations as a function of quark mass and NfN_f. We find remarkable agreement with our expression down to a fairly light quark mass. However, simulations with eight heavy flavors and two light flavors show that the eight flavors do more than just shift the gauge coupling. We observe confinement-deconfinement transitions at β=0\beta=0 induced by a large number of heavy quarks. We comment on the relevance of our results to contemporary simulations of QCD which include dynamical fermions.Comment: COLO-HEP-311, 26 pages and 6 postscript figures; file is a shar file and all macros are (hopefully) include

    Pressure and non-linear susceptibilities in QCD at finite chemical potentials

    Get PDF
    When the free energy density of QCD is expanded in a series in the chemical potential, mu, the Taylor coefficients are the non-linear quark number susceptibilities. We show that these depend on the prescription for putting chemical potential on the lattice, making all extrapolations in chemical potential prescription dependent at finite lattice spacing. To put bounds on the prescription dependence, we investigate the magnitude of the non-linear susceptibilities over a range of temperature, T, in QCD with two degenerate flavours of light dynamical quarks at lattice spacing 1/4T. The prescription dependence is removed in quenched QCD through a continuum extrapolation, and the dependence of the pressure, P, on mu is obtained.Comment: 15 pages, 2 figures. Data on chi_uuuu added, discussion enhance

    Quark number susceptibilities, strangeness and dynamical confinement

    Get PDF
    We report first results on the strange quark number susceptibility, chi_s, over a large range of temperatures, mainly in the plasma phase of QCD. Chi_s jumps across the phase transition temperature, T_c, and grows rapidly with temperature above but close to T_c. For all quark masses and susceptibilities in the entire temperature range studied, we found significant departures from ideal-gas values. We also observed a strong correlation between these quantities and the susceptibility in the scalar/pseudo-scalar channel, supporting ideas of ``dynamical confinement'' in the high temperature phase of the QCD plasma.Comment: 4 pages, 4 figure

    A precise determination of T_c in QCD from scaling

    Get PDF
    Existing lattice data on the QCD phase transition are analyzed in renormalized perturbation theory. In quenched QCD it is found that T_c scales for lattices with only 3 time slices, and that T_c/Lambda_msbar=1.15 \pm 0.05. A preliminary estimate in QCD with two flavours of dynamical quarks shows that this ratio depends on the quark mass. For realistic quark masses we estimate T_c/Lambda_msbar=0.49 \pm 0.02. We also investigate the equation of state in quenched QCD at 1-loop order in renormalised perturbation theory.Comment: 7 pages, 5 eps figures; improved error analysis yields smaller errors on T_

    Numerical Approximations Using Chebyshev Polynomial Expansions

    Full text link
    We present numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N (El-gendi's method). The solutions are exact at these points, apart from round-off computer errors and the convergence of other numerical methods used in connection to solving the linear system of equations. Applications to initial value problems in time-dependent quantum field theory, and second order boundary value problems in fluid dynamics are presented.Comment: minor wording changes, some typos have been eliminate

    Light hadrons with improved staggered quarks: approaching the continuum limit

    Full text link
    We have extended our program of QCD simulations with an improved Kogut-Susskind quark action to a smaller lattice spacing, approximately 0.09 fm. Also, the simulations with a approximately 0.12 fm have been extended to smaller quark masses. In this paper we describe the new simulations and computations of the static quark potential and light hadron spectrum. These results give information about the remaining dependences on the lattice spacing. We examine the dependence of computed quantities on the spatial size of the lattice, on the numerical precision in the computations, and on the step size used in the numerical integrations. We examine the effects of autocorrelations in "simulation time" on the potential and spectrum. We see effects of decays, or coupling to two-meson states, in the 0++, 1+, and 0- meson propagators, and we make a preliminary mass computation for a radially excited 0- meson.Comment: 43 pages, 16 figure

    On the temperature dependence of correlation functions in the space like direction in hot QCD

    Full text link
    We study the temperature dependence of quark antiquark correlations in the space like direction. In particular, we predict the temperature dependence of space like Bethe-Salpeter amplitudes using recent Lattice gauge data for the space like string potential. We also investigate the effect of the space like string potential on the screening mass and discuss possible corrections which may arise when working with point sources.Comment: 15 pages 8 figures (not included, will be sent on request), (SUNY-NTG-94-3

    Pion Propagation near the QCD Chiral Phase Transition

    Get PDF
    We point out that, in analogy with spin waves in antiferromagnets, all parameters describing the real-time propagation of soft pions at temperatures below the QCD chiral phase transition can be expressed in terms of static correlators. This allows, in principle, the determination of the soft pion dispersion relation on the lattice. Using scaling and universality arguments, we determine the critical behavior of the parameters of pion propagation. We predict that when the critical temperature is approached from below, the pole mass of the pion drops despite the growth of the pion screening mass. This fact is attributed to the decrease of the pion velocity near the phase transition.Comment: 8 pages (single column), RevTeX; added references, version to be published in PR

    The continuum limit of quark number susceptibilities

    Get PDF
    We report the continuum limit of quark number susceptibilities in quenched QCD. Deviations from ideal gas behaviour at temperature T increase as the lattice spacing is decreased from T/4 to T/6, but a further decrease seems to have very little effect. The measured susceptibilities are 20% lower than the ideal gas values, and also 10% below the hard thermal loop (HTL) results. The off-diagonal susceptibility is several orders of magnitude smaller than the HTL results. We verify a strong correlation between the lowest screening mass and the susceptibility. We also show that the quark number susceptibilities give a reasonable account of the Wroblewski parameter, which measures the strangeness yield in a heavy-ion collision.Comment: 8 pages, 5 figure
    • …
    corecore