1,659 research outputs found

    The Fermionic Density-functional at Feshbach Resonance

    Full text link
    We consider a dilute gas of neutral unpolarized fermionic atoms at zero temperature.The atoms interact via a short range (tunable) attractive interaction. We demonstrate analytically a curious property of the gas at unitarity. Namely, the correlation energy of the gas, evaluated by second order perturbation theory, has the same density dependence as the first order exchange energy, and the two almost exactly cancel each other at Feshbach resonance irrespective of the shape of the potential, provided (μrs)>>1(\mu r_s) >> 1. Here (μ)1(\mu)^{-1} is the range of the two-body potential, and rsr_s is defined through the number density n=3/(4πrs3)n=3/(4\pi r_s^3). The implications of this result for universality is discussed.Comment: Five pages, one table. accepted for publication in PR

    Spin Information from Vector-Meson Decay in Photoproduction

    Get PDF
    For the photoproduction of vector mesons, all single and double spin observables involving vector meson two-body decays are defined consistently in the γN\gamma N center of mass. These definitions yield a procedure for extracting physically meaningful single and double spin observables that are subject to known rules concerning their angle and energy evolution. As part of this analysis, we show that measuring the two-meson decay of a photoproduced ρ\rho or ϕ\phi does not determine the vector meson's vector polarization, but only its tensor polarization. The vector meson decay into lepton pairs is also insensitive to the vector meson's vector polarization, unless one measures the spin of one of the leptons. Similar results are found for all double spin observables which involve observation of vector meson decay. To access the vector meson's vector polarization, one therefore needs to either measure the spin of the decay leptons, make an analysis of the background interference effects or relate the vector meson's vector polarization to other accessible spin observables.Comment: 22 pages, 3 figure

    Aharonov-Casher oscillations of spin current through a multichannel mesoscopic ring

    Full text link
    The Aharonov-Casher (AC) oscillations of spin current through a 2D ballistic ring in the presence of Rashba spin-orbit interaction and external magnetic field has been calculated using the semiclassical path integral method. For classically chaotic trajectories the Fokker-Planck equation determining dynamics of the particle spin polarization has been derived. On the basis of this equation an analytic expression for the spin conductance has been obtained taking into account a finite width of the ring arms carrying large number of conducting channels. It was shown that the finite width results in a broadening and damping of spin current AC oscillations. We found that an external magnetic field leads to appearance of new nondiagonal components of the spin conductance, allowing thus by applying a rather weak magnetic field to change a direction of the transmitted spin current polarization.Comment: 16 pages, 6 figure

    Dropping cold quantum gases on Earth over long times and large distances

    Full text link
    We describe the non-relativistic time evolution of an ultra-cold degenerate quantum gas (bosons/fermions) falling in Earth's gravity during long times (10 sec) and over large distances (100 m). This models a drop tower experiment that is currently performed by the QUANTUS collaboration at ZARM (Bremen, Germany). Starting from the classical mechanics of the drop capsule and a single particle trapped within, we develop the quantum field theoretical description for this experimental situation in an inertial frame, the corotating frame of the Earth, as well as the comoving frame of the drop capsule. Suitable transformations eliminate non-inertial forces, provided all external potentials (trap, gravity) can be approximated with a second order Taylor expansion around the instantaneous trap center. This is an excellent assumption and the harmonic potential theorem applies. As an application, we study the quantum dynamics of a cigar-shaped Bose-Einstein condensate in the Gross-Pitaevskii mean-field approximation. Due to the instantaneous transformation to the rest-frame of the superfluid wave packet, the long-distance drop (100m) can be studied easily on a numerical grid.Comment: 18 pages latex, 5 eps figures, submitte

    Proton recoil polarization in exclusive (e,e'pp) reactions

    Full text link
    The general formalism of nucleon recoil polarization in the (e,eNN{\vec e},e'{\vec N}N) reaction is given. Numerical predictions are presented for the components of the outgoing proton polarization and of the polarization transfer coefficient in the specific case of the exclusive 16^{16}O(e,epp{\vec e},e'{\vec p}p)14^{14}C knockout reaction leading to discrete states in the residual nucleus. Reaction calculations are performed in a direct knockout framework where final-state interactions and one-body and two-body currents are included. The two-nucleon overlap integrals are obtained from a calculation of the two-proton spectral function of 16^{16}O where long-range and short-range correlations are consistently included. The comparison of results obtained in different kinematics confirms that resolution of different final states in the 16^{16}O(e,epp{\vec e},e'{\vec p}p)14^{14}C reaction may act as a filter to disentangle and separately investigate the reaction processes due to short-range correlations and two-body currents and indicates that measurements of the components of the outgoing proton polarization may offer good opportunities to study short-range correlations.Comment: 12 pages, 6 figure

    Emergence of Oscillons in an Expanding Background

    Full text link
    We consider a (1+1) dimensional scalar field theory that supports oscillons, which are localized, oscillatory, stable solutions to nonlinear equations of motion. We study this theory in an expanding background and show that oscillons now lose energy, but at a rate that is exponentially small when the expansion rate is slow. We also show numerically that a universe that starts with (almost) thermal initial conditions will cool to a final state where a significant fraction of the energy of the universe -- on the order of 50% -- is stored in oscillons. If this phenomenon persists in realistic models, oscillons may have cosmological consequences.Comment: 13 pages, 4 .eps figures, uses RevTeX4; v2: clarified details of expansion, added reference

    Inflationary spectra and partially decohered distributions

    Full text link
    It is generally expected that decoherence processes will erase the quantum properties of the inflationary primordial spectra. However, given the weakness of gravitational interactions, one might end up with a distribution which is only partially decohered. Below a certain critical change, we show that the inflationary distribution retains quantum properties. We identify four of these: a squeezed spread in some direction of phase space, non-vanishing off-diagonal matrix elements, and two properties used in quantum optics called non-PP-representability and non-separability. The last two are necessary conditions to violate Bell's inequalities. The critical value above which all these properties are lost is associated to the `grain' of coherent states. The corresponding value of the entropy is equal to half the maximal (thermal) value. Moreover it coincides with the entropy of the effective distribution obtained by neglecting the decaying modes. By considering backreaction effects, we also provide an upper bound for this entropy at the onset of the adiabatic era.Comment: 42 pages, 9 figures; 1 ref. adde

    Ultrasonic activation of irrigants increases growth factor release from human dentine.

    Get PDF
    OBJECTIVES Bioactive proteins are sequestered in human dentine and play a decisive role in dental pulp regeneration and repair. They can be released and exposed on the dentine surface by acids, but also chelators, such as ethylenediaminetetraacetic acid (EDTA). The objectives of this study were (i) to evaluate whether ultrasonic activation of irrigants in the root canal will promote growth factor release from dentine and (ii) to collect bioactive proteins in a physiological solution. MATERIALS AND METHODS Human dentine disks underwent irrigation with and without ultrasonic activation. The protocols included treatment by either a single or two consecutive steps with 10 % EDTA and phosphate-buffered saline (PBS), where each sample was treated three times. To mimic clinical conditions, selected irrigation regimens were applied to root canals of extracted human teeth after preparation. Amounts of transforming growth factor β1 (TGF-β1) in solution were quantified using enzyme-linked immunosorbent assays. Nonparametric statistical analysis was performed to compare different groups as well as repetitions within a group (Mann-Whitney U test, α = 0.05). Additionally, morphological changes of dentine surfaces were visualized by scanning electron microscopy (SEM). RESULTS TGF-β1 was not detectable after irrigation of dentine with PBS, neither with nor without ultrasonic activation. Irrigation with EDTA released TGF-β1, and ultrasonic activation of EDTA enhanced this effect. However, preceding EDTA conditioning enabled the release of bioactive proteins into PBS solution. Similar results were observed in dentine disks and root canals. Visualization of dentine surfaces after different treatment revealed superficial erosion after ultrasonic activation irrespective of the irrigant solution, but different degrees of exposure of organic substance. CONCLUSIONS Ultrasonic activation enhances growth factor release from human dentine. Bioactive proteins can be isolated in physiological solvents and may act as autologous supplements for regenerative endodontic treatment or pulp tissue engineering. CLINICAL RELEVANCE Autologous growth factors from human dentine can advance treatment strategies in dental pulp tissue engineering

    Hybrid simulations of lateral diffusion in fluctuating membranes

    Full text link
    In this paper we introduce a novel method to simulate lateral diffusion of inclusions in a fluctuating membrane. The regarded systems are governed by two dynamic processes: the height fluctuations of the membrane and the diffusion of the inclusion along the membrane. While membrane fluctuations can be expressed in terms of a dynamic equation which follows from the Helfrich Hamiltonian, the dynamics of the diffusing particle is described by a Langevin or Smoluchowski equation. In the latter equations, the curvature of the surface needs to be accounted for, which makes particle diffusion a function of membrane fluctuations. In our scheme these coupled dynamic equations, the membrane equation and the Langevin equation for the particle, are numerically integrated to simulate diffusion in a membrane. The simulations are used to study the ratio of the diffusion coefficient projected on a flat plane and the intramembrane diffusion coefficient for the case of free diffusion. We compare our results with recent analytical results that employ a preaveraging approximation and analyze the validity of this approximation. A detailed simulation study of the relevant correlation functions reveals a surprisingly large range where the approximation is applicable.Comment: 12 pages, 9 figures, accepted for publication in Phys. Rev.

    The Flavor Asymmetry of the Nucleon Sea

    Get PDF
    We re-examine the effects of anti-symmetry on the anti-quarks in the nucleon sea arising from gluon exchange and pion exchange between confined quarks. While the effect is primarily to suppress anti-down relative to anti-up quarks, this is numerically insignificant for the pion terms.Comment: To appear in Phys. Rev.
    corecore