4,064 research outputs found

    Robust polarization-based quantum key distribution over collective-noise channel

    Full text link
    We present two polarization-based protocols for quantum key distribution. The protocols encode key bits in noiseless subspaces or subsystems, and so can function over a quantum channel subjected to an arbitrary degree of collective noise, as occurs, for instance, due to rotation of polarizations in an optical fiber. These protocols can be implemented using only entangled photon-pair sources, single-photon rotations, and single-photon detectors. Thus, our proposals offer practical and realistic alternatives to existing schemes for quantum key distribution over optical fibers without resorting to interferometry or two-way quantum communication, thereby circumventing, respectively, the need for high precision timing and the threat of Trojan horse attacks.Comment: Minor changes, added reference

    Efficient discrete-time simulations of continuous-time quantum query algorithms

    Full text link
    The continuous-time query model is a variant of the discrete query model in which queries can be interleaved with known operations (called "driving operations") continuously in time. Interesting algorithms have been discovered in this model, such as an algorithm for evaluating nand trees more efficiently than any classical algorithm. Subsequent work has shown that there also exists an efficient algorithm for nand trees in the discrete query model; however, there is no efficient conversion known for continuous-time query algorithms for arbitrary problems. We show that any quantum algorithm in the continuous-time query model whose total query time is T can be simulated by a quantum algorithm in the discrete query model that makes O[T log(T) / log(log(T))] queries. This is the first upper bound that is independent of the driving operations (i.e., it holds even if the norm of the driving Hamiltonian is very large). A corollary is that any lower bound of T queries for a problem in the discrete-time query model immediately carries over to a lower bound of \Omega[T log(log(T))/log (T)] in the continuous-time query model.Comment: 12 pages, 6 fig

    Improvement of stabilizer based entanglement distillation protocols by encoding operators

    Full text link
    This paper presents a method for enumerating all encoding operators in the Clifford group for a given stabilizer. Furthermore, we classify encoding operators into the equivalence classes such that EDPs (Entanglement Distillation Protocol) constructed from encoding operators in the same equivalence class have the same performance. By this classification, for a given parameter, the number of candidates for good EDPs is significantly reduced. As a result, we find the best EDP among EDPs constructed from [[4,2]] stabilizer codes. This EDP has a better performance than previously known EDPs over wide range of fidelity.Comment: 22 pages, 2 figures, In version 2, we enumerate all encoding operators in the Clifford group, and fix the wrong classification of encoding operators in version

    Developing the Deutsch-Hayden approach to quantum mechanics

    Get PDF
    The formalism of Deutsch and Hayden is a useful tool for describing quantum mechanics explicitly as local and unitary, and therefore quantum information theory as concerning a "flow" of information between systems. In this paper we show that these physical descriptions of flow are unique, and develop the approach further to include the measurement interaction and mixed states. We then give an analysis of entanglement swapping in this approach, showing that it does not in fact contain non-local effects or some form of superluminal signalling.Comment: 14 pages. Added section on entanglement swappin

    Counterfactual Quantum Cryptography

    Full text link
    Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. This paper shows that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle.Comment: 19 pages, 1 figure; a little ambiguity in the version 1 removed; abstract, text, references, and appendix revised; suggestions and comments are highly appreciate

    A Theory of Fault-Tolerant Quantum Computation

    Full text link
    In order to use quantum error-correcting codes to actually improve the performance of a quantum computer, it is necessary to be able to perform operations fault-tolerantly on encoded states. I present a general theory of fault-tolerant operations based on symmetries of the code stabilizer. This allows a straightforward determination of which operations can be performed fault-tolerantly on a given code. I demonstrate that fault-tolerant universal computation is possible for any stabilizer code. I discuss a number of examples in more detail, including the five-qubit code.Comment: 30 pages, REVTeX, universal swapping operation added to allow universal computation on any stabilizer cod

    Encoding a qubit in an oscillator

    Get PDF
    Quantum error-correcting codes are constructed that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. These codes exploit the noncommutative geometry of phase space to protect against errors that shift the values of the canonical variables q and p. In the setting of quantum optics, fault-tolerant universal quantum computation can be executed on the protected code subspace using linear optical operations, squeezing, homodyne detection, and photon counting; however, nonlinear mode coupling is required for the preparation of the encoded states. Finite-dimensional versions of these codes can be constructed that protect encoded quantum information against shifts in the amplitude or phase of a d-state system. Continuous-variable codes can be invoked to establish lower bounds on the quantum capacity of Gaussian quantum channels.Comment: 22 pages, 8 figures, REVTeX, title change (qudit -> qubit) requested by Phys. Rev. A, minor correction

    From qubits to black holes: entropy, entanglement and all that

    Full text link
    Entropy plays a crucial role in characterization of information and entanglement, but it is not a scalar quantity and for many systems it is different for different relativistic observers. Loop quantum gravity predicts the Bekenstein-Hawking term for black hole entropy and logarithmic correction to it. The latter originates in the entanglement between the pieces of spin networks that describe black hole horizon. Entanglement between gravity and matter may restore the unitarity in the black hole evaporation process. If the collapsing matter is assumed to be initially in a pure state, then entropy of the Hawking radiation is exactly the created entanglement between matter and gravity.Comment: Honorable Mention in the 2005 Gravity Research Foundation Essay Competitio

    Generation of Kerr non-Gaussian motional states of trapped ions

    Full text link
    Non-Gaussian states represent a powerful resource for quantum information protocols in the continuous variables regime. Cat states, in particular, have been produced in the motional degree of freedom of trapped ions by controlled displacements dependent on the ionic internal state. An alternative method harnesses the Kerr nonlinearity naturally existent in this kind of system. We present detailed calculations confirming its feasibility for typical experimental conditions. Additionally, this method permits the generation of complex non-Gaussian states with negative Wigner functions. Especially, superpositions of many coherent states are achieved at a fraction of the time necessary to produce the cat state.Comment: 6 pages, 5 figure

    Unified derivations of measurement-based schemes for quantum computation

    Get PDF
    We present unified, systematic derivations of schemes in the two known measurement-based models of quantum computation. The first model (introduced by Raussendorf and Briegel [Phys. Rev. Lett., 86, 5188 (2001)]) uses a fixed entangled state, adaptive measurements on single qubits, and feedforward of the measurement results. The second model (proposed by Nielsen [Phys. Lett. A, 308, 96 (2003)] and further simplified by Leung [Int. J. Quant. Inf., 2, 33 (2004)]) uses adaptive two-qubit measurements that can be applied to arbitrary pairs of qubits, and feedforward of the measurement results. The underlying principle of our derivations is a variant of teleportation introduced by Zhou, Leung, and Chuang [Phys. Rev. A, 62, 052316 (2000)]. Our derivations unify these two measurement-based models of quantum computation and provide significantly simpler schemes.Comment: 14 page
    • …
    corecore