68 research outputs found

    Infrared Vertical External Cavity Surface Emitting Laser Threshold Magnetometer

    Full text link
    Nitrogen-vacancy (NV) centers have considerable promise as high sensitivity magnetometers, however are commonly limited by inefficient collection and low contrasts. Laser threshold magnetometry (LTM) enables efficient collection and high contrasts, providing a path towards higher sensitivity magnetometry. We demonstrate an infrared LTM using an ensemble of NV centers in a single crystal diamond plate integrated into a vertical external cavity surface emitting laser. The laser was tuned to the spin dependent absorption line of the NV centers, allowing for optical readout by monitoring the laser output power. We demonstrate a magnetic sensitivity of 7.5~nT/Hz\sqrt{\textit{Hz}} in the frequency range between 10 and 50 Hz. Furthermore, the contrast and the projected PSNL sensitivity are shown to improve significantly by operating close to the lasing threshold, achieving 18.4\% and 26.6~pT/Hz\sqrt{\textit{Hz}} near threshold. What's more, an unexpected saturable absorption phenomenon was observed near threshold, which enhanced the contrast and projected PSNL sensitivity

    Sustained Efficacy and Safety of Burosumab, a Monoclonal Antibody to FGF23, in Children With X-Linked Hypophosphatemia

    Get PDF
    PURPOSE: In X-linked hypophosphatemia (XLH), excess fibroblast growth factor-23 causes hypophosphatemia and low calcitriol, leading to musculoskeletal disease with clinical consequences. XLH treatment options include conventional oral phosphate with active vitamin D, or monotherapy with burosumab, a monoclonal antibody approved to treat children and adults with XLH. We have previously reported outcomes up to 64 weeks, and here we report safety and efficacy follow-up results up to 160 weeks from an open-label, multicenter, randomized, dose-finding trial of burosumab for 5- to 12-year-old children with XLH. METHODS: After 1 week of conventional therapy washout, patients were randomized 1:1 to burosumab every 2 weeks (Q2W) or every 4 weeks (Q4W) for 64 weeks, with dosing titrated based on fasting serum phosphorus levels between baseline and week 16. From week 66 to week 160, all patients received Q2W burosumab. RESULTS: Twenty-six children were randomized initially into each Q2W and Q4W group and all completed treatment to week 160. In 41 children with open distal femoral and proximal tibial growth plates (from both treatment groups), total Rickets Severity Score significantly decreased by 0.9β€…Β±β€…0.1 (least squares meanβ€…Β±β€…SE; Pβ€…<β€…0.0001) from baseline to week 160. Fasting serum phosphorus increases were sustained by burosumab therapy throughout the study, with an overall population mean (SD) of 3.35 (0.39) mg/dL, within the pediatric normal range (3.2-6.1 mg/dL) at week 160 (mean change from baseline Pβ€…<β€…0.0001). Most adverse events were mild to moderate in severity. MAIN CONCLUSIONS: In children with XLH, burosumab administration for 160 weeks improved phosphate homeostasis and rickets and was well-tolerated. Long-term safety was consistent with the reported safety profile of burosumab. CLINICALTRIALS.GOV: NCT0216357

    Burosumab vs conventional therapy in children with X-linked hypophosphatemia:results of the open-label, phase 3 extension period

    Get PDF
    In a randomized, open-label phase 3 study of 61 children aged 1–12 years old with X-linked hypophosphatemia (XLH) previously treated with conventional therapy, changing to burosumab every 2 weeks (Q2W) for 64 weeks improved the phosphate metabolism, radiographic rickets, and growth compared with conventional therapy. In this open-label extension period (weeks 64–88), 21 children continued burosumab Q2W at the previous dose or crossed over from conventional therapy to burosumab starting at 0.8 mg/kg Q2W with continued clinical radiographic assessments through week 88. Efficacy endpoints and safety observations were summarized descriptively for both groups (burosumab continuation, n = 6; crossover, n = 15). At week 88 compared with baseline, improvements in the following outcomes were observed in the burosumab continuation and crossover groups, respectively: mean (SD) RGI-C rickets total score (primary outcome), +2.11 (0.27) and +1.89 (0.35); mean (SD) RGI-C lower limb deformity score, +1.61 (0.91) and +0.73 (0.82); and mean (SD) height Z-score + 0.41 (0.50) and +0.08 (0.34). Phosphate metabolism normalized rapidly in the crossover group and persisted in the continuation group. Mean (SD) serum alkaline phosphatase decreased from 169% (43%) of the upper limit of normal (ULN) at baseline to 126% (51%) at week 88 in the continuation group and from 157% (33%) of the ULN at baseline to 111% (23%) at week 88 in the crossover group. During the extension period, treatment-emergent adverse events (AEs) were reported in all 6 children in the burosumab continuation group and 14/15 children in the crossover group. The AE profiles in the randomized and extension periods were similar, with no new safety signals identified. Improvements from baseline in radiographic rickets continued in the extension period among children with XLH who remained on burosumab. Children who crossed over from conventional therapy to burosumab demonstrated a rapid improvement in phosphate metabolism and improved rickets healing over the ensuing 22 weeks

    Juvenile Paget’s Disease From Heterozygous Mutation of SP7 Encoding Osterix (Specificity Protein 7, Transcription Factor Sp7)

    Get PDF
    Juvenile Paget's disease (JPD) became in 1974 the commonly used name for ultra-rare heritable occurrences of rapid bone remodeling throughout of the skeleton that present in infancy or early childhood as fractures and deformity hallmarked biochemically by marked elevation of serum alkaline phosphatase (ALP) activity (hyperphosphatasemia). Untreated, JPD can kill during childhood or young adult life. In 2002, we reported that homozygous deletion of the gene called tumor necrosis factor receptor superfamily, member 11B (TNFRSF11B) encoding osteoprotegerin (OPG) explained JPD in Navajos. Soon after, other bi-allelic loss-of-function TNFRSF11B defects were identified in JPD worldwide. OPG inhibits osteoclastogenesis and osteoclast activity by decoying receptor activator of nuclear factor ΞΊ-B (RANK) ligand (RANKL) away from its receptor RANK. Then, in 2014, we reported JPD in a Bolivian girl caused by a heterozygous activating duplication within TNFRSF11A encoding RANK. Herein, we identify mutation of a third gene underlying JPD. An infant girl began atraumatic fracturing of her lower extremity long-bones. Skull deformity and mild hearing loss followed. Our single investigation of the patient, when she was 15 years-of-age, showed generalized osteosclerosis and hyperostosis. DXA revealed a Z-score of +5.1 at her lumbar spine and T-score of +3.3 at her non-dominant wrist. Biochemical studies were consistent with positive mineral balance and several markers of bone turnover were elevated and included striking hyperphosphatasemia. Iliac crest histopathology was consistent with rapid skeletal remodeling. Measles virus transcripts, common in classic Paget's disease of bone, were not detected in circulating mononuclear cells. Then, reportedly, she responded to several months of alendronate therapy with less skeletal pain and correction of hyperphosphatasemia but had been lost to our follow-up. After we detected no defect in TNFRSF11A or B, trio exome sequencing revealed a de novo heterozygous missense mutation (c.926C>G; p.S309W) within SP7 encoding the osteoblast transcription factor osterix (specificity protein 7, transcription factor SP7). Thus, mutation of SP7 represents a third genetic cause of JPD

    A destabilized bacterial luciferase for dynamic gene expression studies

    Get PDF
    Fusions of genetic regulatory elements with reporter genes have long been used as tools for monitoring gene expression and have become a major component in synthetic gene circuit implementation. A major limitation of many of these systems is the relatively long half-life of the reporter protein(s), which prevents monitoring both the initiation and the termination of transcription in real-time. Furthermore, when used as components in synthetic gene circuits, the long time constants associated with reporter protein decay may significantly degrade circuit performance. In this study, short half-life variants of LuxA and LuxB from Photorhabdus luminescens were constructed in Escherichia coli by inclusion of an 11-amino acid carboxy-terminal tag that is recognized by endogenous tail-specific proteases. Results indicated that the addition of the C-terminal tag affected the functional half-life of the holoenzyme when the tag was added to luxA or to both luxA and luxB, but modification of luxB alone did not have a significant effect. In addition, it was also found that alteration of the terminal three amino acid residues of the carboxy-terminal tag fused to LuxA generated variants with half-lives of intermediate length in a manner similar to that reported for GFP. This report is the first instance of the C-terminal tagging approach for the regulation of protein half-life to be applied to an enzyme or monomer of a multi-subunit enzyme complex and will extend the utility of the bacterial luciferase reporter genes for the monitoring of dynamic changes in gene expression

    Discovering cis-Regulatory RNAs in Shewanella Genomes by Support Vector Machines

    Get PDF
    An increasing number of cis-regulatory RNA elements have been found to regulate gene expression post-transcriptionally in various biological processes in bacterial systems. Effective computational tools for large-scale identification of novel regulatory RNAs are strongly desired to facilitate our exploration of gene regulation mechanisms and regulatory networks. We present a new computational program named RSSVM (RNA Sampler+Support Vector Machine), which employs Support Vector Machines (SVMs) for efficient identification of functional RNA motifs from random RNA secondary structures. RSSVM uses a set of distinctive features to represent the common RNA secondary structure and structural alignment predicted by RNA Sampler, a tool for accurate common RNA secondary structure prediction, and is trained with functional RNAs from a variety of bacterial RNA motif/gene families covering a wide range of sequence identities. When tested on a large number of known and random RNA motifs, RSSVM shows a significantly higher sensitivity than other leading RNA identification programs while maintaining the same false positive rate. RSSVM performs particularly well on sets with low sequence identities. The combination of RNA Sampler and RSSVM provides a new, fast, and efficient pipeline for large-scale discovery of regulatory RNA motifs. We applied RSSVM to multiple Shewanella genomes and identified putative regulatory RNA motifs in the 5β€² untranslated regions (UTRs) in S. oneidensis, an important bacterial organism with extraordinary respiratory and metal reducing abilities and great potential for bioremediation and alternative energy generation. From 1002 sets of 5β€²-UTRs of orthologous operons, we identified 166 putative regulatory RNA motifs, including 17 of the 19 known RNA motifs from Rfam, an additional 21 RNA motifs that are supported by literature evidence, 72 RNA motifs overlapping predicted transcription terminators or attenuators, and other candidate regulatory RNA motifs. Our study provides a list of promising novel regulatory RNA motifs potentially involved in post-transcriptional gene regulation. Combined with the previous cis-regulatory DNA motif study in S. oneidensis, this genome-wide discovery of cis-regulatory RNA motifs may offer more comprehensive views of gene regulation at a different level in this organism. The RSSVM software, predictions, and analysis results on Shewanella genomes are available at http://ural.wustl.edu/resources.html#RSSVM

    Induction of Cytoprotective Pathways Is Central to the Extension of Lifespan Conferred by Multiple Longevity Pathways

    Get PDF
    Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.National Institute on Aging (AG16636

    Developmental Markers of Genetic Liability to Autism in Parents: A Longitudinal, Multigenerational Study

    Get PDF
    Genetic liability to autism spectrum disorder (ASD) can be expressed in unaffected relatives through subclinical, genetically meaningful traits, or endophenotypes. This study aimed to identify developmental endophenotypes in parents of individuals with ASD by examining parents’ childhood academic development over the school-age period. A cohort of 139 parents of individuals with ASD were studied, along with their children with ASD and 28 controls. Parents’ childhood records in the domains of language, reading, and math were studied from grades K-12. Results indicated that relatively lower performance and slower development of skills (particularly language related skills), and an uneven rate of development across domains predicted ASD endophenotypes in adulthood for parents, and the severity of clinical symptoms in children with ASD. These findings may mark childhood indicators of genetic liability to ASD in parents, that could inform understanding of the subclinical expression of ASD genetic liability
    • …
    corecore