536 research outputs found

    The Importance of Lens Galaxy Environments

    Full text link
    While many strong gravitational lens galaxies are suspected to lie in groups or clusters of galaxies, environmental effects in lens models are often unconstrained and sometimes ignored. We show that this creates significant biases in a variety of lensing applications, by creating mock lenses associated with each of 13 galaxies in a realistic model group, and then analyzing them with standard techniques. We find that standard models of double lenses, which neglect environment, grossly overestimate the ellipticity of the lens galaxy (de/e~0.5) and the Hubble constant (dh/h~0.22). Standard models of quad lenses, which approximate the environment as a tidal shear, recover the ellipticity reasonably well (|de/e|<~0.24) but overestimate the Hubble constant (dh/h~0.15), and have significant (~30%) errors in the millilensing analyses used to constrain the amount of substructure in dark matter halos. For both doubles and quads, standard models slightly overestimate the velocity dispersion of the lens galaxy (d(sigma)/sigma~0.06), and underestimate the magnifications of the images (d(mu)/mu ~ -0.25). Standard analyses of lens statistics overestimate Omega_Lambda (by 0.05-0.14), and underestimate the ratio of quads to doubles (by a factor of 2). These biases help explain some long-standing puzzles (such as the high observed quad/double ratio), but aggravate others (such as the low value of H_0 inferred from lensing). Most of the biases are caused by neglect of the convergence from the mass associated with the environment, but additional uncertainty is introduced by neglect of higher-order terms. Fortunately, we show that directly observing and modeling lens environments should make it possible to remove the biases and reduce the uncertainties associated with environments to the few percent level. (Abridged)Comment: 14 emulateapj pages; accepted in Ap

    Dark matter and non-Newtonian gravity from General Relativity coupled to a fluid of strings

    Get PDF
    An exact solution of Einstein's field equations for a point mass surrounded by a static, spherically symmetric fluid of strings is presented. The solution is singular at the origin. Near the string cloud limit there is a 1/r1/r correction to Newton's force law. It is noted that at large distances and small accelerations, this law coincides with the phenomenological force law invented by Milgrom in order to explain the flat rotation curves of galaxies without introducing dark matter. When interpreted in the context of a cosmological model with a string fluid, the new solution naturally explains why the critical acceleration of Milgrom is of the same order of magnitude as the Hubble parameter.Comment: 12 pages, REVTeX, no figure

    Median Statistics, H_0, and the Accelerating Universe

    Full text link
    (Abridged) We develop median statistics that provide powerful alternatives to chi-squared likelihood methods and require fewer assumptions about the data. Applying median statistics to Huchra's compilation of nearly all estimates of the Hubble constant, we find a median value H_0=67 km/s/Mpc. Median statistics assume only that the measurements are independent and free of systematic errors. This estimate is arguably the best summary of current knowledge because it uses all available data and, unlike other estimates, makes no assumption about the distribution of measurement errors. The 95% range of purely statistical errors is +/- 2 km/s/Mpc. The statistical precision of this result leads us to analyze the range of possible systematic errors in the median, which we estimate to be roughly +/- 5 km/s/Mpc (95% limits), dominating over the statistical errors. A Bayesian median statistics treatment of high-redshift Type Ia supernovae (SNe Ia) apparent magnitude versus redshift data from Riess et al. yields a posterior probability that the cosmological constant Lambda > 0 of 70 or 89%, depending on the prior information used. The posterior probability of an open universe is about 47%. Analysis of the Perlmutter et al. high-redshift SNe Ia data show the best-fit flat-Lambda model favored over the best-fit Lambda = 0 open model by odds of 366:1; corresponding Riess et al. odds are 3:1 (assuming prior odds of 1:1).Median statistics analyses of the SNe Ia data do not rule out a time-variable Lambda model, and may even favor it over a time-independent Lambda and a Lambda = 0 open model.Comment: Significant revisions include discussion of systematic errors in the median of H_0. Accepted for publication in The Astrophysical Journal, v548, February 20, 2001 issue. 47 pages incl. figures and table

    Exotic spacetimes, superconducting strings with linear momentum, and (not quite) all that

    Get PDF
    We derive the general exact vacuum metrics associated with a stationary (non static), non rotating, cylindrically symmetric source. An analysis of the geometry described by these vacuum metrics shows that they contain a subfamily of metrics that, although admitting a consistent time orientation, display "exotic" properties, such as "trapping" of geodesics and closed causal curves through every point. The possibility that such spacetimes could be generated by a superconducting string, endowed with a neutral current and momentum, has recently been considered by Thatcher and Morgan. Our results, however, differ from those found by Thatcher and Morgan, and the discrepancy is explained. We also analyze the general possibility of constructing physical sources for the exotic metrics, and find that, under certain restrictions, they must always violate the dominant energy condition (DEC). We illustrate our results by explicitly analyzing the case of concentric shells, where we find that in all cases the external vacuum metric is non exotic if the matter in the shells satisfies the DEC.Comment: 13 pages with no figures. Accepted in PR

    The velocity peaks in the cold dark matter spectrum on Earth

    Full text link
    The cold dark matter spectrum on earth is expected to have peaks in velocity space. We obtain estimates for the sizes and locations of these peaks. To this end we have generalized the secondary infall model of galactic halo formation to include angular momentum of the dark matter particles. This new model is still spherically symmetric and it has self-similar solutions. Our results are relevant to direct dark matter search experiments.Comment: 12 pages including 1 table and 4 figures, LaTeX, REVTEX 3.0 versio

    Open Inflationary Universes in the Induced Gravity Theory

    Full text link
    The induced gravity theory is a variant of Jordan--Brans--Dicke theory where the `dilaton' field possesses a potential. It has the unusual feature that in the presence of a false vacuum there is a {\em stable} static solution with the dilaton field displaced from the minimum of its potential, giving perfect de Sitter expansion. We demonstrate how this solution can be used to implement the open inflationary universe scenario. The necessary second phase of inflation after false vacuum decay by bubble nucleation is driven by the dilaton rolling from the static point to the minimum of its potential. Because the static solution is stable whilst the false vacuum persists, the required evolution occurs for a wide range of initial conditions. As the exterior of the bubble is perfect de Sitter space, there is no problem with fields rolling outside the bubble, as in one of the related models considered by Linde and Mezhlumian, and the expansion rates before and after tunnelling may be similar which prevents problematic high-amplitude super-curvature modes from being generated. Once normalized to the microwave background anisotropies seen by the COBE satellite, the viable models form a one-parameter family for each possible Ω0\Omega_0.Comment: 7 pages RevTeX file with three figures incorporated (uses RevTeX and epsf). Also available by e-mailing ARL, or by WWW at http://star-www.maps.susx.ac.uk/papers/early_papers.htm

    Energy Production in the Formation of a Finite Thickness Cosmic String

    Get PDF
    The classical electromagnetic modes outside a long, straight, superconducting cosmic string are calculated, assuming the string to be surrounded by a superconducting cylindric surface of radius R. Thereafter, by use of a Bogoliubov-type argument, the electromagnetic energy W produced per unit length in the lowest two modes is calculated when the string is formed "suddenly". The essential new element in the present analysis as compared with prior work of Parker [Phys. Rev. Lett. {\bf 59}, 1369 (1987)] and Brevik and Toverud [Phys. Rev. D {\bf 51}, 691 (1995)], is that the radius {\it a} of the string is assumed finite, thus necessitating Neumann functions to be included in the fundamental modes. We find that the theory is changed significantly: W is now strongly concentrated in the lowest mode (m,s)=(0,1)(m,s)=(0,1), whereas the proportionality W(Gμ/t)2W \propto (G\mu /t)^2 that is characteristic for zero-width strings is found in the next mode (1,1). Here G is the gravitational constant, μ\mu the string mass per unit length, and t the GUT time.Comment: 20 pages, LaTeX, no figure

    Can the Universe Create Itself?

    Full text link
    The question of first-cause has troubled philosophers and cosmologists alike. Now that it is apparent that our universe began in a Big Bang explosion, the question of what happened before the Big Bang arises. Inflation seems like a very promising answer, but as Borde and Vilenkin have shown, the inflationary state preceding the Big Bang must have had a beginning also. Ultimately, the difficult question seems to be how to make something out of nothing. This paper explores the idea that this is the wrong question --- that that is not how the Universe got here. Instead, we explore the idea of whether there is anything in the laws of physics that would prevent the Universe from creating itself. Because spacetimes can be curved and multiply connected, general relativity allows for the possibility of closed timelike curves (CTCs). Thus, tracing backwards in time through the original inflationary state we may eventually encounter a region of CTCs giving no first-cause. This region of CTCs, may well be over by now (being bounded toward the future by a Cauchy horizon). We illustrate that such models --- with CTCs --- are not necessarily inconsistent by demonstrating self-consistent vacuums for Misner space and a multiply connected de Sitter space in which the renormalized energy-momentum tensor does not diverge as one approaches the Cauchy horizon and solves Einstein's equations. We show such a Universe can be classically stable and self-consistent if and only if the potentials are retarded, giving a natural explanation of the arrow of time. Some specific scenarios (out of many possible ones) for this type of model are described. For example: an inflationary universe gives rise to baby universes, one of which turns out to be itself. Interestingly, the laws of physics may allow the Universe to be its own mother.Comment: 48 pages, 8 figure

    Compact hyperbolic universe and singularities

    Get PDF
    Recently many people have discussed the possibility that the universe is hyperbolic and was in an inflationary phase in the early stage. Under these assumptions, it is shown that the universe cannot have compact hyperbolic time-slices. Though the universal covering space of the universe has a past Cauchy horizon and can be extended analytically beyond it, the extended region has densely many points which correspond to singularities of the compact universe. The result is essentially attributed to the ergodicity of the geodesic flow on a compact negatively curved manifold. Validity of the result is also discussed in the case of inhomogeneous universe. Relationship with the strong cosmic censorship conjecture is also discussed.Comment: 8 pages with 7 figure

    Rotating Dilaton Solutions in 2+1 Dimensions

    Get PDF
    We report a three parameter family of solutions for dilaton gravity in 2+1 dimensions with finite mass and finite angular momentum. These solutions are obtained by a compactification of vacuum solutions in 3+1 dimensions with cylindrical symmetry. One class of solutions corresponds to conical singularities and the other leads to curvature singularities.Comment: Accepted to be published in Gen. Rel. Grav., added reference
    corecore