2 research outputs found

    A Collision Cone Approach for Control Barrier Functions

    Full text link
    This work presents a unified approach for collision avoidance using Collision-Cone Control Barrier Functions (CBFs) in both ground (UGV) and aerial (UAV) unmanned vehicles. We propose a novel CBF formulation inspired by collision cones, to ensure safety by constraining the relative velocity between the vehicle and the obstacle to always point away from each other. The efficacy of this approach is demonstrated through simulations and hardware implementations on the TurtleBot, Stoch-Jeep, and Crazyflie 2.1 quadrotor robot, showcasing its effectiveness in avoiding collisions with dynamic obstacles in both ground and aerial settings. The real-time controller is developed using CBF Quadratic Programs (CBF-QPs). Comparative analysis with the state-of-the-art CBFs highlights the less conservative nature of the proposed approach. Overall, this research contributes to a novel control formation that can give a guarantee for collision avoidance in unmanned vehicles by modifying the control inputs from existing path-planning controllers.Comment: 13 pages, 16 pages. arXiv admin note: substantial text overlap with arXiv:2209.11524, arXiv:2303.15871, arXiv:2310.1083

    Control Barrier Functions in UGVs for Kinematic Obstacle Avoidance: A Collision Cone Approach

    Full text link
    In this paper, we propose a new class of Control Barrier Functions (CBFs) for Unmanned Ground Vehicles (UGVs) that help avoid collisions with kinematic (non-zero velocity) obstacles. While the current forms of CBFs have been successful in guaranteeing safety/collision avoidance with static obstacles, extensions for the dynamic case with torque/acceleration-controlled unicycle and bicycle models have seen limited success. Moreover, with these nonholonomic UGV models, applications of existing CBFs have been conservative in terms of control, i.e., steering/thrust control has not been possible under certain common scenarios. Drawing inspiration from the classical use of collision cones for obstacle avoidance in path planning, we introduce its novel CBF formulation with theoretical guarantees on safety for both the unicycle and bicycle models. The main idea is to ensure that the velocity of the obstacle w.r.t. the vehicle is always pointing away from the vehicle. Accordingly, we construct a constraint that ensures that the velocity vector always avoids a cone of vectors pointing at the vehicle. The efficacy of this new control methodology is experimentally verified on the Copernicus mobile robot. We further extend it to the bicycle model and demonstrate collision avoidance under various scenarios in the CARLA simulator.Comment: Submitted to 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8 pages, 8 figures, For supplement video follow https://youtu.be/4qWYaWEPduM. The first and second authors have contributed equall
    corecore