72 research outputs found
Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress
AbstractMultiple tolerance to stressful environmental conditions of the black, yeast-like fungus Aureobasidium pullulans is achieved through different adaptations, among which there is the restructuring of the lipid composition of their membranes. Here, we describe three novel genes encoding fatty-acid-modifying enzymes in A. pullulans, along with the levels of their mRNAs under different salinity conditions. High levels of Δ 9−desaturase and Δ12−desaturase mRNAs were seen at high salinities, which were consistent with an increased desaturation of the fatty acids in the cell membranes. Elevated levels of elongase mRNA were also detected. Surprisingly, increases in the levels of these mRNAs were also seen following hypo-osmotic shock, while hyperosmotic shock had exactly the opposite effect, demonstrating that data that are obtained from up-shift and down-shift salinity studies should be interpreted with caution
Redefinition of Aureobasidium pullulans and its varieties
Using media with low water activity, a large numbers of aureobasidium-like
black yeasts were isolated from glacial and subglacial ice of three
polythermal glaciers from the coastal Arctic environment of Kongsfjorden
(Svalbard, Spitsbergen), as well as from adjacent sea water, sea ice and
glacial meltwaters. To characterise the genetic variability of
Aureobasidium pullulans strains originating from the Arctic and
strains originating pan-globally, a multilocus molecular analysis was
performed, through rDNA (internal transcribed spacers, partial 28 S rDNA), and
partial introns and exons of genes encoding β-tubulin (TUB),
translation elongation factor (EF1α) and elongase
(ELO). Two globally ubiquitous varieties were distinguished: var.
pullulans, occurring particularly in slightly osmotic substrates and
in the phyllosphere; and var. melanogenum, mainly isolated from
watery habitats. Both varieties were commonly isolated from the sampled Arctic
habitats. However, some aureobasidium-like strains from subglacial ice from
three different glaciers in Kongsfjorden (Svalbard, Spitsbergen), appeared to
represent a new variety of A. pullulans. A strain from dolomitic
marble in Namibia was found to belong to yet another variety. No molecular
support has as yet been found for the previously described var.
aubasidani. A partial elongase-encoding gene was successfully used as
a phylogenetic marker at the (infra-)specific level
Halophyte–Endophyte Interactions: Linking Microbiome Community Distribution and Functionality to Salinity
Many plants are unable to adapt to rapid environmental changes (e.g., salinity, drought, or limited nutrients) and may acquire assistance from microbes that have the capacity to increase tolerance of host-plants in stress conditions. By having the right microbes, the plants are more resilient! Such microbes include endophytes that inhabit inner tissues of the plant without causing symptoms of disease in their host. However, this plant–endophytic association exists only when chemical equilibrium is maintained between both, therefore making this mutualistic interaction even more unique. Therefore it is interesting to decode the endophytic community composition in halophytes specifically in the most salt-tolerant halophyte species Salicornia europaea, and further determine the factors that could affect this association. Moreover, understanding the endophytes potential plant growth-promoting activities in association with host (S. europaea) and non-host plant (non-halophytes) are the focus of this chapter
A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents
Aim Plant-endophytic associations exist only when equilibrium is maintained between both partners. This study analyses the properties of endophytic fungi
inhabiting a halophyte growing in high soil salinity and tests whether these fungi are beneficial or detrimental when non-host plants are inoculated.
Method Fungi were isolated from Salicornia europaea collected from two sites differing in salinization history (anthropogenic and naturally saline) and analyzed for plant growth promoting abilities and non-host plant interactions.
Results Most isolated fungi belonged to Ascomycota (96%) including dematiaceous fungi and commonly known plant pathogens and saprobes. The strains were
metabolically active for siderophores, polyamines and indole-3-acetic acid (mainly Aureobasidium sp.) with very low activity for phosphatases. Many showed proteolytic, lipolytic, chitinolytic, cellulolytic and amylolytic activities but low pectolytic activity. Different activities between similar fungal species found in both sites were particularly seen for Epiccocum sp., Arthrinium sp. and
Trichoderma sp. Inoculating the non-host Lolium perenne with selected fungi increased plant growth, mainly in the symbiont (Epichloë)-free variety.
Arthrinium gamsii CR1-9 and Stereum gausapatum ISK3-11 were most effective for plant growth promotion.
Conclusions This research suggests that host lifestyle and soil characteristics have a strong effect on endophytic fungi, and environmental stress could disturb the
plant-fungi relations. In favourable conditions, these fungi may be effective in facilitating crop production in non-cultivable saline lands
Phenotypes associated with pathogenicity
Around 85% of the environments on Earth are permanently or seasonally colder than 5 °C. Among those, the poles constitute unique biomes, which harbor a broad variety of microbial life, including an abundance of fungi. Many fungi have an outstanding ability to withstand extreme conditions and play vital ecosystem roles of decomposers as well as obligate or facultative symbionts of many other organisms. Due to their dispersal capabilities, microorganisms from cryosphere samples can be distributed around the world. Such dispersal involves both species with undefined pathogenicity and potentially pathogenic strains. Here we describe the isolation of fungal species from pristine Arctic locations in Greenland and Svalbard and the testing of the expression of characteristics usually associated with pathogenic species, such as growth at 37 °C, hemolytic ability, and susceptibility to antifungal agents. A total of 320 fungal isolates were obtained, and 24 of the most abundant and representative species were further analyzed. Species known as emerging pathogens, like Aureobasidium melanogenum, Naganishia albida, and Rhodotorula mucilaginosa, were able to grow at 37 °C, showed beta-hemolytic activity, and were intrinsically resistant to commonly used antifungals such as azoles and echinocandins. Antifungal resistance screening revealed a low susceptibility to voriconazole in N. albida and Penicillium spp. and to fluconazole in Glaciozyma watsonii and Glaciozyma-related taxon
- …