2 research outputs found

    Interaction between regional temperature and shade level shapes saproxylic beetle communities

    Get PDF
    AimThe 'concept of relative constancy of habitats' assumes that species differ in their habitat preferences depending on the regional temperature so that all populations experience similar microclimatic conditions. Our aim was to assess the relevance of this concept by disentangling the effects of shade level and regional temperature on southern and northern distributed saproxylic (=dead wood dependent) beetle species.LocationSweden.MethodsWe established a field experiment by placing 435 logs of Norway spruce (Picea abies) along shade gradients in six regions differing in regional temperature (along a 1200 km latitudinal gradient). For each log, we sampled the saproxylic beetle community and calculated the Community Temperature Index (CTI), indicating to what extent the community is dominated by southern or northern species.ResultsSpecies richness and total abundance were better explained by shade level, whereas species composition was better explained by study region. In colder regions, CTI varied along the shade gradient, whereas in warmer regions, CTI was more similar along the shade gradient. Moreover, in colder regions, the number of southern species was higher in sun-exposed logs, whereas in warmer regions, the number of southern species was higher in shaded logs. This supports the concept of relative constancy of habitats. In contrast, northern species preferred shaded conditions regardless of the regional temperature.Main ConclusionsRegional temperature, shade level and resulting microclimate are important drivers of species richness, total abundance and composition. Occurrence patterns of saproxylic beetle species follow to some extent the concept of relative constancy of habitats since their habitat preferences vary with regional temperature. Northern species are of conservation concern due to disadvantages by climate warming and clear-cutting. They are favoured by preserving forests with rarely disturbed canopies

    Habitat openness and predator abundance determine predation risk of warningly colored longhorn beetles (Cerambycidae) in temperate forest

    Get PDF
    Organisms have evolved different defense mechanisms, such as crypsis and mimicry, to avoid detection and recognition by predators. A prominent example is Batesian mimicry, where palatable species mimic unpalatable or toxic ones, such as Clytini (Coleoptera: Cerambycidae) that mimic wasps. However, scientific evidence for the effectiveness of Batesian mimicry in Cerambycids in natural habitats is scarce. We investigated predation of warningly and nonwarningly colored Cerambycids by birds in a temperate forest using beetle dummies. Dummies mimicking Tetropium castaneum, Leptura aethiops, Clytus arietis, and Leptura quadrifasciata were exposed on standing and laying deadwood and monitored predation events by birds over one season. The 20 surveyed plots differed in their structural complexity and canopy openness due to different postdisturbance logging strategies. A total of 88 predation events on warningly colored beetle dummies and 89 predation events on nonwarningly colored beetle dummies did not reveal the difference in predation risk by birds. However, predation risk increased with canopy openness, bird abundance, and exposure time, which peaked in July. This suggests that environmental factors have a higher importance in determining predation risk of warningly and nonwarningly colored Cerambycidae than the actual coloration of the beetles. Our study showed that canopy openness might be important in determining the predation risk of beetles by birds regardless of beetles' warning coloration. Different forest management strategies that often modify canopy openness may thus alter predator-prey interactions
    corecore