494 research outputs found
Time--Splitting Schemes and Measure Source Terms for a Quasilinear Relaxing System
Several singular limits are investigated in the context of a
system arising for instance in the modeling of chromatographic processes. In
particular, we focus on the case where the relaxation term and a
projection operator are concentrated on a discrete lattice by means of Dirac
measures. This formulation allows to study more easily some time-splitting
numerical schemes
Interaction between superconducting vortices and Bloch wall in ferrite garnet film
Interaction between a Bloch wall in a ferrite-garnet film and a vortex in a
superconductor is analyzed in the London approximation. Equilibrium
distribution of vortices formed around the Bloch wall is calculated. The
results agree quantitatively with magneto-optical experiment where an in-plane
magnetized ferrite-garnet film placed on top of NbSe2 superconductor allows
observation of individual vortices. In particular, our model can reproduce a
counter-intuitive attraction observed between vortices and a Bloch wall having
the opposite polarity. It is explained by magnetic charges appearing due to
discontinuity of the in-plane magnetization across the wall.Comment: 4 pages, 5 figure
DNA unzipped under a constant force exhibits multiple metastable intermediates
Single molecule studies, at constant force, of the separation of
double-stranded DNA into two separated single strands may provide information
relevant to the dynamics of DNA replication. At constant applied force, theory
predicts that the unzipped length as a function of time is characterized by
jumps during which the strands separate rapidly, followed by long pauses where
the number of separated base pairs remains constant. Here, we report previously
uncharacterized observations of this striking behavior carried out on a number
of identical single molecules simultaneously. When several single lphage
molecules are subject to the same applied force, the pause positions are
reproducible in each. This reproducibility shows that the positions and
durations of the pauses in unzipping provide a sequence-dependent molecular
fingerprint. For small forces, the DNA remains in a partially unzipped state
for at least several hours. For larger forces, the separation is still
characterized by jumps and pauses, but the double-stranded DNA will completely
unzip in less than 30 min
Using Fill Terraces to Understand Incision Rates and Evolution of the Colorado River in Eastern Grand Canyon, Arizona
The incision and aggradation of the Colorado River in eastern Grand Canyon through middle to late Quaternary time can be traced in detail using well-exposed fill terraces dated by a combination of optically stimulated luminescence, uranium series, and cosmogenic nuclide dating. This fluvial history provides the best bedrock incision rate for this important landscape and highlights the complications and advantages of fill terrace records for understanding river long-profile evolution and incision. The use of fill terraces, as distinct from strath terraces, for calculating incision rates is complicated by the cyclic alluviation and incision they record. In the example of the Grand Canyon this has led to various rates being reported by different workers and rates that tend to be overestimates in shorter records. We illustrate that a meaningful long-term bedrock incision rate of 140 m/m.y. can be extracted from the Grand Canyon record by linking episodes when the Colorado River is floored on bedrock. Variable incision rates reported in the greater region may be, to some degree, due to inconsistent calculations. Our data also highlight that the Colorado River has been a mixed alluvial-bedrock river through both time and space and has been a bedrock river for less than half of its Pleistocene history. This strong temporal variation, combined with the varying bedrock the river encounters on its path, heightens the challenge of understanding the tectonic, climatic, and drainage integration controls on the form and evolution of the Colorado River’s long profile
Numerical Investigation on Charring Ablator Geometric Effects: Study of Stardust Sample Return Capsule Heat Shield
Sample geometry is very influential in small charring ablative articles where 1D assumption might not be accurate. In heat shield design, 1D is often assumed since the nose radius is much larger than the thickness of charring. Whether the 1D assumption is valid for the heat shield is unknown. Therefore, the geometric effects of Stardust sample return capsule heat shield are numerically studied using a material response program. The developed computer program models material charring, conductive heat transfer, surface energy balance, pyrolysis gas transport and orthotropic material properties in 3D Cartesian coordinates. Simulation results show that the centerline temperatures predicted by 3D model are quite close to 1D model at the surface, but not the case inside the material. The pyrolysis surface gas blowing behaviors are quite similar but differences are observed at later time. Orthotropic model predicted a very different heat shield response to both the isotropic model and the 1D model
Analyzing the Influence of Diatomite and Mineral Fertilizers on the Features of Cadmium-Contaminated Urban Lawns
Contamination with heavy metals is among key anthropogenic pressures, experienced by urban lawns. It results in depletion of their environmental quality and functions. Implementation of fertilizers, containing silicon, is a promising approach to increase urban lawns’ sustainability to heavy metals’ pollution. Based on the field experiment, an influence of cadmium contamination on the chemical features and biomass quality of modeled urban green lawn ecosystems was studied. We demonstrated an increase of cadmium consumption by biomass on the second year of observations as the result of diatomite implementation together with mineral fertilizers. Both total sugar and disaccharides’ content in biomass was 15-20% higher for the contaminated plots where diatomite was implemented together with mineral fertilizers, compared to the uncontaminated control. This evidences a positive effect of the implemented reclaiming on stress tolerance of the green lawns
Spatial linear global instability analysis of the HIFiRE-5 elliptic cone model flow
The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local
heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documente
Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines?
Over the last decades, vaccine development has advanced significantly in pursuing higher safety with less side effects. However, this is often accompanied by a reduction in vaccine immunogenicity and an increased dependency on adjuvants to enhance vaccine potency. Especially for diseases like cancer, it is important that therapeutic vaccines contain adjuvants that promote strong T cell responses. An important mode of action for such adjuvants is to prolong antigen exposure to dendritic cells (DCs) and to induce their maturation. These mature DCs are extremely effective in the activation of antigen-specific T cells, which is a pre-requisite for induction of potent and long-lasting cellular immunity. For the activation of CD8+ cytotoxic T cell responses, however, the exogenous vaccine antigens need to gain access to the endogenous MHCI presentation pathway of DCs, a process referred to as antigen cross-presentation. In this review, we will focus on recent insights in clinically relevant vaccine adjuvants that impact DC cross-presentation efficiency, including aluminum-based nanoparticles, saponin-based adjuvants, and Toll-like receptor ligands. Furthermore, we will discuss the importance of adjuvant combinations and highlight new developments in cancer vaccines. Understanding the mode of action of adjuvants in general and on antigen cross-presentation in DCs in particular will be important for the design of novel adjuvants as part of vaccines able to induce strong cellular immunity
Evaluating the size and extent of paleolakes in central Tibet during the late Pleistocene
Subhorizontal lake shorelines allow a geodynamic test of the size and extent of a hypothesized paleolake in central Tibet, the East Qiangtang Lake (EQL), during the last interglacial period (marine isotope stage (MIS) 5e). Reconstructions based on relict lake deposits suggest that the EQL would have been ~400 m deep and over ~66,000 km2. Models of flexural rebound driven by lake recession predict that shorelines near the EQL center, at the present-day location of Siling Co, would have rebounded 60–90 m above their initial elevation. New 36Cl chronology of the highest relict shorelines around Siling Co indicates that they reflect lake levels between 110 and 190 ka. These shorelines, however, are presently >300 m below their predicted elevations, implying a substantially smaller water load. Our results reveal that the expansion of Tibetan lakes during MIS 5e was relatively limited. Instead, individual lakes were supplied by river networks, much as they are today
- …