33 research outputs found
Recommended from our members
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are analysed for eclipse-driven gravity-wave perturbations during the 20 March 2015 solar eclipse over north-west Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves
Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves
We advance our prior energy- and flux-budget turbulence closure model
(Zilitinkevich et al., 2007, 2008) for the stably stratified atmospheric flows
and extend it accounting for additional vertical flux of momentum and
additional productions of turbulent kinetic energy, turbulent potential energy
(TPE) and turbulent flux of potential temperature due to large-scale internal
gravity waves (IGW). Main effects of IGW are following: the maximal value of
the flux Richardson number (universal constant 0.2-0.25 in the no-IGW regime)
becomes strongly variable. In the vertically homogeneous stratification, it
increases with increasing wave energy and can even exceed 1. In the
heterogeneous stratification, when IGW propagate towards stronger
stratification, the maximal flux Richardson number decreases with increasing
wave energy, reaches zero and then becomes negative. In other words, the
vertical flux of potential temperature becomes counter-gradient. IGW also
reduce anisotropy of turbulence and increase the share of TPE in the turbulent
total energy. Depending on the direction (downward or upward), IGW either
strengthen or weaken the total vertical flux of momentum. Predictions from the
proposed model are consistent with available data from atmospheric and
laboratory experiments, direct numerical simulations and large-eddy
simulations.Comment: 37 pages, 5 figures, revised versio